Sergei M Peresada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1891968/publications.pdf

Version: 2024-02-01

516710 552781 2,275 64 16 citations h-index papers

26 g-index 64 64 64 850 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Observer-based speed estimation for vector controlled induction motors. Technical Electrodynamics, 2022, 2022, 25-32.	0.7	О
2	Fast Experimental Magnetic Model Identification for Synchronous Reluctance Motor Drives. Energies, 2022, 15, 2207.	3.1	3
3	SENSORLESS SPEED CONTROL OF THE DIRECT CURRENT MOTORS. Praci Institutu Elektrodinamiki Nacionalaïnoi Akademii Nauk Ukraini, 2021, 2021, 23-29.	0.2	1
4	ROBUST DIRECT FIELD ORIENTED CONTROL OF INDUCTION GENERATOR. Technical Electrodynamics, 2021, 2021, 14-24.	0.7	0
5	Co-Simulation Analysis for Performance Prediction of Synchronous Reluctance Drives. Electronics (Switzerland), 2021, 10, 2154.	3.1	5
6	Parameters Identification for Self-Commissioning of DC-DC Boost Converters. , 2021, , .		0
7	Sensorless Speed Control of the Surface Mounted Permanent Magnet Synchronous Motors. , 2021, , .		0
8	Inverter Nonlinearity Effects on Self-Commissioning of Synchronous Reluctance Drives. , 2021, , .		3
9	FORMATION OF DYNAMIC MODES OF FULL-CONTROLLED HYBRID ENERGY STORAGE SYSTEM FOR ELECTRIC VEHICLES. Technical Electrodynamics, 2020, 2020, 35-40.	0.7	2
10	SELECTIVE ESTIMATION OF THREE-PHASE CURRENT HARMONICS. Technical Electrodynamics, 2020, 2020, 15-18.	0.7	1
11	Theoretical and Experimental Comparison of the Standard and Feedback Linearizing Speed Controllers for Synchronous Motors. , 2020, , .		2
12	Dynamics of the Synchronous Motor based Traction Electromechanical Systems with Hybrid Energy Sources., 2020,,.		1
13	Indirect Field Oriented Control of The Saturated Induction Generators with Linear PI Regulators. , 2019, , .		1
14	Rapid Prototyping Station for Batteries-Supercapacitors Hybrid Energy Storage Systems. , 2019, , .		5
15	Adaptive Speed Control and Self-Commissioning of the Surface Mounted Permanent Magnet Synchronous Motors., 2019,,.		5
16	Challenges of the Optimization of a High-Speed Induction Machine for Naval Applications. Energies, 2019, 12, 2431.	3.1	9
17	Adaptive Position Control and Self-Commissioning of the Interior Permanent Magnet Synchronous Motors. , 2019, , .		4
18	Partially Feedback Linearizing DC-Link Voltage Controller for Three-Phase Shunt Active Power Filters. , 2019, , .		0

#	Article	IF	Citations
19	Direct vector control of induction motors based on rotor resistance-invariant rotor flux observer. , 2018, , .		O
20	Adaptive Current Control for Shunt Active Power Filters Under Resistance and Inductance Uncertainty, , 2018 , , .		1
21	Adaptive Current Control for Shunt Active Power Filters. , 2018, , .		1
22	SELECTIVE AND ADAPTIVE HARMONICS ESTIMATION FOR THREE-PHASE SHUNT ACTIVE POWER FILTERS. Technical Electrodynamics, 2018, 2018, 29-38.	0.7	7
23	SELECTIVE COMPENSATION OF THREE-PHASE CURRENT HARMONICS. Technical Electrodynamics, 2018, 2018, 102-105.	0.7	2
24	CONCEPT OF EXPERIMENTAL RESEARCH FOR ELECTRICAL VEHICLE ELECTROMECHANICAL SYSTEMS WITH HYBRID ENERGY STORAGES. Technical Electrodynamics, 2018, 2018, 57-60.	0.7	4
25	Maximum Torque-per-Amp Control for Traction IM Drives: Theory and Experimental Results. IEEE Transactions on Industry Applications, 2017, 53, 181-193.	4.9	49
26	Three-phase current harmonics estimation for shunt active power filters., 2017,,.		4
27	Maximum torque-per-amp tracking control of saturated induction motors. , 2017, , .		1
28	Speed sensorless direct field oriented control of induction generator., 2017,,.		0
29	Study of the torque control algorithm for a doubly-fed full-controlled induction machine. , 2017, , .		0
30	Two nonlinear controllers for voltage source AC-DC converter., 2017,,.		3
31	Robust indirect field oriented control of induction generator. , 2016, , .		6
32	Dynamic output feedback linearizing control of saturated induction motors with torque per Ampere ratio maximization. , 2016, , .		1
33	Indirect field oriented output feedback linearized control of induction generator. , 2016, , .		5
34	Output feedback control of stand-alone doubly-fed induction generator. , 2016, , .		1
35	GENERAL THEORETICAL SOLUTION OF SENSORLESS SPEED-FLUX VECTOR CONTROL OF INDUCTION MOTOR. Technical Electrodynamics, 2016, 2016, 26-33.	0.7	0
36	CONTROL OF DOUBLY-FED INDUCTION MACHINE IN EXCITATION AND SYNCHRONIZATION MODES. Technical Electrodynamics, 2016, 2016, 45-47.	0.7	0

#	Article	IF	CITATIONS
37	MTA control for traction IM drives: Theory and experimental results., 2015,,.		2
38	Torque control of saturated induction motors with torque per Ampere ratio maximization., 2014,,.		7
39	Identification of induction motor parameters for self-commissioning procedure: A new algorithm and experimental verification. , 2014 , , .		3
40	Sliding mode observer based control of induction motors: Experimental study., 2014,,.		2
41	Adaptive observers for self commissioning of induction motor drives: Theory and experiment. , 2014, , .		2
42	Identification of induction motor parameters adaptively controlling stator currents., 2013,,.		3
43	Torque and reactive power control of doubly-fed induction machine with matrix converter., 2008,,.		5
44	Speed Sensorless Control of Induction Motors Based on a Reduced-Order Adaptive Observer. IEEE Transactions on Control Systems Technology, 2007, 15, 1049-1064.	5.2	89
45	Current sensorless position–flux tracking controller for induction motor drives. Mechatronics, 2007, 17, 15-30.	3.3	4
46	Intrinsic Speed-Sensorless Control of Induction Motor., 2006,,.		0
47	A speed-sensorless indirect field-oriented control for induction motors based on high gain speed estimation. Automatica, 2006, 42, 1637-1650.	5. O	61
48	Power control of a doubly fed induction machine via output feedback. Control Engineering Practice, 2004, 12, 41-57.	5 . 5	80
49	Indirect stator flux-oriented output feedback control of a doubly fed induction machine. IEEE Transactions on Control Systems Technology, 2003, 11, 875-888.	5.2	57
50	Theoretical and experimental comparison of indirect field-oriented controllers for induction motors. IEEE Transactions on Power Electronics, 2003, 18, 151-163.	7.9	45
51	Sensorless control of induction motors with exponential stability property., 2003,,.		8
52	High-performance robust speed-flux tracking controller for induction motor. International Journal of Adaptive Control and Signal Processing, 2000, 14, 177-200.	4.1	45
53	On-line stator and rotor resistance estimation for induction motors. IEEE Transactions on Control Systems Technology, 2000, 8, 570-579.	5. 2	137
54	High-performance indirect field-oriented output-feedback control of induction motors. Automatica, 1999, 35, 1033-1047.	5.0	35

#	Article	IF	CITATIONS
55	Global adaptive output feedback control of induction motors with uncertain rotor resistance. IEEE Transactions on Automatic Control, 1999, 44, 967-983.	5.7	190
56	Adaptive Output Feedback Control of Current-Fed Induction Motors with Uncertain Rotor Resistance and Load Torque. Automatica, 1998, 34, 617-624.	5.0	61
57	Output feedback control of current-fed induction motors with unknown rotor resistance. IEEE Transactions on Control Systems Technology, 1996, 4, 336-347.	5.2	86
58	Nonlinear adaptive control of permanent magnet step motors. Automatica, 1995, 31, 1595-1604.	5.0	88
59	Exponentially convergent rotor resistance estimation for induction motors. IEEE Transactions on Industrial Electronics, 1995, 42, 508-515.	7.9	67
60	Adaptive input-output linearizing control of induction motors. IEEE Transactions on Automatic Control, 1993, 38, 208-221.	5.7	614
61	Feedback linearizing control of switched reluctance motors. IEEE Transactions on Automatic Control, 1987, 32, 371-379.	5.7	423
62	Speed sensorless control of induction motor based on indirect field-orientation., 0,,.		22
63	New passivity-based speed-flux tracking controllers for induction motor. , 0, , .		6
64	Sensorless indirect field-oriented control of induction motors, based on high gain speed estimation. , 0, , .		6