
Teun Dekker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/189140/publications.pdf Version: 2024-02-01

TELIN DERRED

#	Article	IF	CITATIONS
1	Attract, reward and disrupt: responses of pests and natural enemies to combinations of habitat manipulation and semiochemicals in organic apple. Journal of Pest Science, 2022, 95, 619-631.	3.7	7
2	bric à brac controls sex pheromone choice by male European corn borer moths. Nature Communications, 2021, 12, 2818.	12.8	21
3	Species-Specific Induction of Plant Volatiles by Two Aphid Species in Apple: Real Time Measurement of Plant Emission and Attraction of Lacewings in the Wind Tunnel. Journal of Chemical Ecology, 2021, 47, 653-663.	1.8	13
4	Long-term maize-Desmodium intercropping shifts structure and composition of soil microbiome with stronger impact on fungal communities. Plant and Soil, 2021, 467, 437-450.	3.7	21
5	Dispersal and competitive release affect the management of native and invasive tephritid fruit flies in large and smallholder farms in Ethiopia. Scientific Reports, 2021, 11, 2690.	3.3	3
6	Is Anopheles gambiae attraction to floral and human skin-based odours and their combination modulated by previous blood meal experience?. Malaria Journal, 2020, 19, 318.	2.3	3
7	A zooprophylaxis strategy using l-lactic acid (Abate) to divert host-seeking malaria vectors from human host to treated non-host animals. Malaria Journal, 2020, 19, 52.	2.3	5
8	Designing a species-selective lure based on microbial volatiles to target Lobesia botrana. Scientific Reports, 2020, 10, 6512.	3.3	8
9	Coding and Evolution of Pheromone Preference in Moths. Entomology Monographs, 2020, , 265-286.	0.5	2
10	False positives from impurities result in incorrect functional characterization of receptors in chemosensory studies. Progress in Neurobiology, 2019, 181, 101661.	5.7	8
11	Novel odor-based strategies for integrated management of vectors of disease. Current Opinion in Insect Science, 2019, 34, 105-111.	4.4	12
12	Hold your breath – Differential behavioral and sensory acuity of mosquitoes to acetone and carbon dioxide. PLoS ONE, 2019, 14, e0226815.	2.5	20
13	Recruiting on the Spot: A Biodegradable Formulation for Lacewings to Trigger Biological Control of Aphids. Insects, 2019, 10, 6.	2.2	8
14	Translating olfactomes into attractants: shared volatiles provide attractive bridges for polyphagy in fruit flies. Ecology Letters, 2019, 22, 108-118.	6.4	20
15	Potential of locally sustainable food baits and traps against the Mediterranean fruit fly <i>Ceratitis capitata</i> in Bolivia. Pest Management Science, 2019, 75, 1671-1680.	3.4	6
16	Getting Them Where They Live—Semiochemical-Based Strategies To Address Major Gaps in Vector Control Programs: Vectrax, SPLAT BAC, Trojan Cow, and SPLAT TK. ACS Symposium Series, 2018, , 101-152.	0.5	4
17	Detection of Volatile Constituents from Food Lures by Tephritid Fruit Flies. Insects, 2018, 9, 119.	2.2	24
18	Internalization of <i>Escherichia coli</i> O157:H7 <i>gfp</i> + in rocket and Swiss chard baby leaves as affected by abiotic and biotic damage. Letters in Applied Microbiology, 2017, 65, 35-41.	2.2	12

TEUN DEKKER

#	Article	IF	CITATIONS
19	Detection and perception of generic host volatiles by mosquitoes: responses to CO ₂ constrains host-seeking behaviour. Royal Society Open Science, 2017, 4, 170189.	2.4	31
20	The Adipokinetic Hormone Receptor Modulates Sexual Behavior, Pheromone Perception and Pheromone Production in a Sex-Specific and Starvation-Dependent Manner in Drosophila melanogaster. Frontiers in Ecology and Evolution, 2016, 3, .	2.2	16
21	Do Fruit Ripening Volatiles Enable Resource Specialism in Polyphagous Fruit Flies?. Journal of Chemical Ecology, 2016, 42, 931-940.	1.8	44
22	Genetic mapping of male pheromone response in the European corn borer identifies candidate genes regulating neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6401-E6408.	7.1	20
23	The Evolution of Olfactory Gene Families in <i>Drosophila</i> and the Genomic Basis of chemical-Ecological Adaptation in <i>Drosophila suzukii</i> . Genome Biology and Evolution, 2016, 8, 2297-2311.	2.5	76
24	The Genetic Basis of Pheromone Evolution in Moths. Annual Review of Entomology, 2016, 61, 99-117.	11.8	90
25	Combining Attractants and Larvicides in Biodegradable Matrices for Sustainable Mosquito Vector Control. PLoS Neglected Tropical Diseases, 2016, 10, e0005043.	3.0	22
26	A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways. BMC Biology, 2015, 13, 75.	3.8	65
27	Sexual Behavior of Drosophila suzukii. Insects, 2015, 6, 183-196.	2.2	76
28	Loss of <i>Drosophila</i> pheromone reverses its role in sexual communication in <i>Drosophila suzukii</i> . Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143018.	2.6	70
29	Electrophysiologically-Active Maize Volatiles Attract Gravid Female European Corn Borer, Ostrinia nubilalis. Journal of Chemical Ecology, 2015, 41, 997-1005.	1.8	39
30	Olfactory responses of <i><scp>D</scp>rosophila suzukii</i> females to host plant volatiles. Physiological Entomology, 2015, 40, 54-64.	1.5	87
31	Temporal Features of Spike Trains in the Moth Antennal Lobe Revealed by a Comparative Time-Frequency Analysis. PLoS ONE, 2014, 9, e84037.	2.5	4
32	Identification of Host Blends that Attract the African Invasive Fruit Fly, Bactrocera invadens. Journal of Chemical Ecology, 2014, 40, 966-976.	1.8	39
33	Linking Genomics and Ecology to Investigate the Complex Evolution of an Invasive Drosophila Pest. Genome Biology and Evolution, 2013, 5, 745-757.	2.5	138
34	Early quality assessment lessens pheromone specificity in a moth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7377-7382.	7.1	31
35	What Reaches the Antenna? How to Calibrate Odor Flux and Ligand-Receptor Affinities. Chemical Senses, 2012, 37, 403-420.	2.0	60
36	A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila. BMC Biology, 2012, 10, 56.	3.8	86

TEUN DEKKER

#	Article	IF	CITATIONS
37	Identification of mosquito repellent odours from Ocimum forskolei. Parasites and Vectors, 2011, 4, 183.	2.5	58
38	Moment-to-moment flight manoeuvres of the female yellow fever mosquito (<i>Aedes aegypti</i> L.) in response to plumes of carbon dioxide and human skin odour. Journal of Experimental Biology, 2011, 214, 3480-3494.	1.7	94
39	Olfaction in the female sheep botfly. Die Naturwissenschaften, 2010, 97, 827-835.	1.6	22
40	Macroglomeruli for fruit odors change blend preference in Drosophila. Die Naturwissenschaften, 2010, 97, 1059-1066.	1.6	55
41	Ostrinia revisited: Evidence for sex linkage in European Corn Borer Ostrinia nubilalis (Hubner) pheromone reception. BMC Evolutionary Biology, 2010, 10, 285.	3.2	23
42	Inheritance of central neuroanatomy and physiology related to pheromone preference in the male European corn borer. BMC Evolutionary Biology, 2010, 10, 286.	3.2	28
43	Reversed functional topology in the antennal lobe of the male European corn borer. Journal of Experimental Biology, 2008, 211, 2841-2848.	1.7	55
44	Olfactory Shifts Parallel Superspecialism for Toxic Fruit in Drosophila melanogaster Sibling, D. sechellia. Current Biology, 2006, 16, 101-109.	3.9	236
45	Neuronal architecture of the mosquito deutocerebrum. Journal of Comparative Neurology, 2005, 493, 207-240.	1.6	136
46	Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. Journal of Experimental Biology, 2005, 208, 2963-2972.	1.7	208
47	Evolution of the olfactory code in the Drosophila melanogaster subgroup. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2333-2340.	2.6	109
48	L-lactic acid: a human-signifying host cue for the anthropophilic mosquitoAnopheles gambiae. Medical and Veterinary Entomology, 2002, 16, 91-98.	1.5	133
49	Innate Preference for Host-Odor Blends Modulates Degree of Anthropophagy of <i>Anopheles gambiae</i> sensu lato (Diptera: Culicidae). Journal of Medical Entomology, 2001, 38, 868-871.	1.8	49
50	Structure of host-odour plumes influences catch ofAnopheles gambiae s.s.andAedes aegyptiin a dual-choice olfactometer. Physiological Entomology, 2001, 26, 124-134.	1.5	62
51	Identification of Olfactory Stimulants for Anopheles gambiae from Human Sweat Samples. Journal of Chemical Ecology, 2000, 26, 1367-1382.	1.8	133
52	Microbial growth enhances the attractiveness of human sweat for the malaria mosquito, Anopheles gambiae sensu stricto (Diptera: Culicidae). Chemoecology, 2000, 10, 129-134.	1.1	18
53	Susceptibility of Anopheles quadriannulatus theobald (Diptera: Culicidae) to Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1999, 93, 578-580.	1.8	29
54	Selection of biting sites on a human host by Anopheles gambiae s.s., An. arabiensis and An. quadriannulatus. Entomologia Experimentalis Et Applicata, 1998, 87, 295-300.	1.4	58

#	Article	IF	CITATIONS
55	Differential responses of mosquito sibling species Anopheles arabiensis and An. quadriannulatusto carbon dioxide, a man or a calf. Medical and Veterinary Entomology, 1998, 12, 136-140.	1.5	82
56	Odor-mediated flight behavior ofAnopheles gambiae gilesSensu Stricto andAn. stephensi liston in response to CO2, acetone, and 1-octen-3-ol (Diptera: Culicidae). Journal of Insect Behavior, 1997, 10, 395-407.	0.7	83