José M Caridad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1889332/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The hot pick-up technique for batch assembly of van der Waals heterostructures. Nature Communications, 2016, 7, 11894.	12.8	446
2	Graphene mobility mapping. Scientific Reports, 2015, 5, 12305.	3.3	89
3	Lithographic band structure engineering of graphene. Nature Nanotechnology, 2019, 14, 340-346.	31.5	82
4	Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Materials, 2014, 1, 035005.	4.4	73
5	A two-dimensional Dirac fermion microscope. Nature Communications, 2017, 8, 15783.	12.8	72
6	Effects of particle contamination and substrate interaction on the Raman response of unintentionally doped graphene. Journal of Applied Physics, 2010, 108, .	2.5	52
7	Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering. Science Advances, 2021, 7, .	10.3	51
8	An electrical analogy to Mie scattering. Nature Communications, 2016, 7, 12894.	12.8	40
9	Observation of 2D Conduction in Ultrathin Germanium Arsenide Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 12998-13004.	8.0	40
10	Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping. Microelectronic Engineering, 2014, 121, 113-117.	2.4	32
11	Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements. Nano Research, 2017, 10, 3596-3605.	10.4	31
12	Automated detection and characterization of graphene and fewâ€layer graphite via Raman spectroscopy. Journal of Raman Spectroscopy, 2011, 42, 286-293.	2.5	28
13	Conductance quantization suppression in the quantum Hall regime. Nature Communications, 2018, 9, 659.	12.8	25
14	Effective Wavelength Scaling of and Damping in Plasmonic Helical Antennae. ACS Photonics, 2015, 2, 675-679.	6.6	23
15	Fermi velocity renormalization in graphene probed by terahertz time-domain spectroscopy. 2D Materials, 2020, 7, 035009.	4.4	23
16	Detection of the Faraday Chiral Anisotropy. Physical Review Letters, 2021, 126, 177401.	7.8	23
17	Plateau–insulator transition in graphene. New Journal of Physics, 2010, 12, 053004.	2.9	22
18	Controllable growth of metallic nano-helices at room temperature conditions. Applied Physics Letters, 2014, 105, .	3.3	22

José M Caridad

#	Article	IF	CITATIONS
19	High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography. RSC Advances, 2015, 5, 66711-66717.	3.6	22
20	A Graphene-Edge Ferroelectric Molecular Switch. Nano Letters, 2018, 18, 4675-4683.	9.1	21
21	Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices. Scientific Reports, 2017, 7, 45548.	3.3	20
22	Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene. 2D Materials, 2017, 4, 045017.	4.4	17
23	Impact of Impurities on the Electrical Conduction of Anisotropic Two-Dimensional Materials. Physical Review Applied, 2020, 13, .	3.8	16
24	Electrostatics of metal–graphene interfaces: sharp p–n junctions for electron-optical applications. Nanoscale, 2019, 11, 10273-10281.	5.6	15
25	Control of the plasmonic near-field in metallic nanohelices. Nanotechnology, 2018, 29, 325204.	2.6	10
26	Unraveling the electronic properties of graphene with substitutional oxygen. 2D Materials, 2021, 8, 045035.	4.4	9
27	High-quality graphene flakes exfoliated on a flat hydrophobic polymer. Applied Physics Letters, 2018, 112, .	3.3	8
28	Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assembly. ACS Omega, 2022, 7, 22626-22632.	3.5	5
29	Gate electrostatics and quantum capacitance in ballistic graphene devices. Physical Review B, 2019, 99, .	3.2	4
30	Effective electrical resistivity in a square array of oriented square inclusions. Nanotechnology, 2021, 32, 185706.	2.6	3
31	Chiral Ag nanostructure arrays as optical antennas. , 2015, , .		1
32	Spontaneous adsorption of ions on graphene at the electrolyte–graphene interface. Applied Physics Letters, 2020, 117, 203102.	3.3	1