Kei Kubota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1888492/publications.pdf

Version: 2024-02-01

71102 42399 14,856 107 41 92 citations h-index g-index papers 110 110 110 10387 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrode materials for K-ion batteries. , 2023, , 83-127.		3
2	Structural change and charge compensation mechanism for Li1+(Fe0.1Ni0.1Mn0.8)1-O2 (0 $<$ x $<$ 1/3) positive electrode material during electrochemical activation. Materials Research Bulletin, 2022, 149, 111743.	5.2	0
3	Superconcentrated NaFSA–KFSA Aqueous Electrolytes for 2 V-Class Dual-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23507-23517.	8.0	7
4	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	7.4	41
5	All-Solid-State Potassium Polymer Batteries Enabled by the Effective Pretreatment of Potassium Metal. ACS Energy Letters, 2022, 7, 2244-2246.	17.4	20
6	MgOâ€Template Synthesis of Extremely High Capacity Hard Carbon for Naâ€Ion Battery. Angewandte Chemie - International Edition, 2021, 60, 5114-5120.	13.8	169
7	MgOâ€Template Synthesis of Extremely High Capacity Hard Carbon for Naâ€Ion Battery. Angewandte Chemie, 2021, 133, 5174-5180.	2.0	11
8	A phosphite-based layered framework as a novel positive electrode material for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5045-5052.	10.3	7
9	A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion batteries. Chemical Science, 2021, 12, 12383-12390.	7.4	10
10	Effect of Particle Size and Anion Vacancy on Electrochemical Potassium Ion Insertion into Potassium Manganese Hexacyanoferrates. ChemSusChem, 2021, 14, 1166-1175.	6.8	31
11	Phase evolution of electrochemically potassium intercalated graphite. Journal of Materials Chemistry A, 2021, 9, 11187-11200.	10.3	27
12	Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. Npj Computational Materials, 2021, 7, .	8.7	39
13	Comparison of Ionic Transport Properties of Non-Aqueous Lithium and Sodium Hexafluorophosphate Electrolytes. Journal of the Electrochemical Society, 2021, 168, 040538.	2.9	24
14	Na3V2O2(PO4)2F3-2 as a stable positive electrode for potassium-ion batteries. Journal of Power Sources, 2021, 493, 229676.	7.8	10
15	1,3,2-Dioxathiolane 2,2-Dioxide as an Electrolyte Additive for K-Metal Cells. ACS Energy Letters, 2021, 6, 3643-3649.	17.4	23
16	Impact of Mg and Ti doping in O3 type NaNi _{1/2} Mn _{1/2} O ₂ on reversibility and phase transition during electrochemical Na intercalation. Journal of Materials Chemistry A, 2021, 9, 12830-12844.	10.3	32
17	Effect of Substituted Styreneâ€Butadiene Rubber Binders on the Stability of 4.5 Vâ€Charged LiCoO ₂ Electrode. ChemElectroChem, 2021, 8, 4345-4352.	3.4	5
18	Enhanced Electrochemical Properties of KTiOPO ₄ â€"rGO Negative Electrode for Sodium and Potassium Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 24823-24830.	3.1	5

#	Article	IF	CITATIONS
19	La ₂ Ni _{0.5} Li _{0.5} O ₄ Modified Single Polycrystalline Particles of NMC622 for Improved Capacity Retention in High-Voltage Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 110505.	2.9	3
20	Structural change induced by electrochemical sodium extraction from layered Oâ€23-NaMnO ₂ . Journal of Materials Chemistry A, 2021, 9, 26810-26819.	10.3	10
21	Development of advanced electrolytes in Na-ion batteries: application of the Red Moon method for molecular structure design of the SEI layer. RSC Advances, 2021, 12, 971-984.	3.6	14
22	High-Capacity Hard Carbon Synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 135-140.	5.1	113
23	Elucidating Influence of Mg―and Cuâ€Doping on Electrochemical Properties of O3â€Na <i>>_x</i> [Fe,Mn]O ₂ for Naâ€Ion Batteries. Small, 2020, 16, e2006483.	10.0	24
24	KFSA/glyme electrolytes for 4 V-class K-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23766-23771.	10.3	26
25	Impact of Newly Developed Styrene–Butadiene–Rubber Binder on the Electrode Performance of High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ Electrode. ACS Applied Energy Materials, 2020, 3, 7978-7987.	5.1	22
26	Development of KPF ₆ /KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Development of KPF _{/KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Development of KPF_{/KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Development of KPF_{/KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Development of KPF_{/KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Development of KPF}/KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Development of KPF}}}	8.0	62
27	Application of Ionic Liquid as K-Ion Electrolyte of Graphite//K ₂ Mn[Fe(CN) ₆] Cell. ACS Energy Letters, 2020, 5, 2849-2857.	17.4	51
28	Structural Investigation of Quaternary Layered Oxides upon Na-Ion Deinsertion. Inorganic Chemistry, 2020, 59, 7408-7414.	4.0	9
29	Application of modified styrene-butadiene-rubber-based latex binder to high-voltage operating LiCoO2 composite electrodes for lithium-ion batteries. Journal of Power Sources, 2020, 468, 228332.	7.8	27
30	Structural Analysis of Sucrose-Derived Hard Carbon and Correlation with the Electrochemical Properties for Lithium, Sodium, and Potassium Insertion. Chemistry of Materials, 2020, 32, 2961-2977.	6.7	150
31	Research Development on K-lon Batteries. Chemical Reviews, 2020, 120, 6358-6466.	47.7	804
32	Electrochemistry and Solid-State Chemistry of Layered Oxides for Li-, Na-, and K-Ion Batteries. Electrochemistry, 2020, 88, 507-514.	1.4	12
33	(Invited) Research Development on K-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 25-25.	0.0	0
34	Effect of Particle Size and Anion Vacancies on Electrochemical Performances of Potassium Manganese Hexacyanoferrate for Potassium-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 170-170.	0.0	0
35	(Invited) Sodium Insertion Carbon Materials As "Beyond Li-GIC― ECS Meeting Abstracts, 2020, MA2020-02, 559-559.	0.0	0
36	Stable and Unstable Diglyme-Based Electrolytes for Batteries with Sodium or Graphite as Electrode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32844-32855.	8.0	77

#	Article	IF	CITATIONS
37	A Layered Inorganic–Organic Open Framework Material as a 4 V Positive Electrode with Highâ€Rate Performance for K″on Batteries. Advanced Energy Materials, 2019, 9, 1902528.	19.5	37
38	Application of Acrylicâ€Rubberâ€Based Latex Binder to Highâ€Voltage Spinel Electrodes of Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 5070-5079.	3.4	23
39	Correlation of carbonization condition with metallic property of sodium clusters formed in hard carbon studied using 23Na nuclear magnetic resonance. Carbon, 2019, 145, 712-715.	10.3	33
40	Lithium Magnesium Tungstate Solid as an Additive into Li(Ni _{1/3} Mn _{1/3} Co _{1/3})O ₂ Electrodes for Li-lon Batteries. Journal of the Electrochemical Society, 2019, 166, A5430-A5436.	2.9	9
41	Optimizing Micrometer-Sized Sn Powder Composite Electrodes for Sodium-Ion Batteries. Electrochemistry, 2019, 87, 70-77.	1.4	4
42	Potassium Metal as Reliable Reference Electrodes of Nonaqueous Potassium Cells. Journal of Physical Chemistry Letters, 2019, 10, 3296-3300.	4.6	93
43	States of thermochemically or electrochemically synthesized NaxPy compounds analyzed by solid state 23Na and 31P nuclear magnetic resonance with theoretical calculation. Journal of Power Sources, 2019, 413, 418-424.	7.8	11
44	Polyanionic Compounds for Potassiumâ€ion Batteries. Chemical Record, 2019, 19, 735-745.	5 . 8	102
45	From Lithium to Sodium and Potassium Batteries. , 2019, , 181-219.		1
46	KPF6-KFSA Binary Salt Electrolytes for 4 V-Class Potassium Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
47	(Invited) On the NaMeO2 (Me = 3d metal) for Na-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
48	$2\mbox{V-Class}$ Aqueous Multi-Ion Batteries Realized By Superconcentrated Na/K Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	0
49	(Keynote) Polyanionic Compounds for K-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
50	K2[(VO)2(HPO4)2(C2O4)] and K x VOPO4 as 4 V-Class Positive Electrode Materials for K-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
51	(Invited) Functional Binders for Li-, Na-, and K-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
52	Poly-Î ³ -glutamate Binder To Enhance Electrode Performances of P2-Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ for Na-Ion Batteries. ACS Applied Materials & Date (1998). Applied Materials & Date (1998). The subset of the s	8.0	53
53	Effect of diphenylethane as an electrolyte additive to enhance high-temperature durability of LiCoO2/graphite cells. Electrochimica Acta, 2018, 270, 120-128.	5.2	7
54	Towards Kâ€lon and Naâ€lon Batteries as "Beyond Liâ€lonâ€. Chemical Record, 2018, 18, 459-479.	5.8	665

#	Article	IF	Citations
55	Unraveling the Role of Doping in Selective Stabilization of NaMnO ₂ Polymorphs: Combined Theoretical and Experimental Study. Chemistry of Materials, 2018, 30, 1257-1264.	6.7	24
56	Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. Journal of Power Sources, 2018, 378, 322-330.	7.8	120
57	Synthesis and Electrochemical Performance of C-Base-Centered Lepidocrocite-like Titanates for Na-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3630-3635.	5.1	12
58	Concentration Effect of Fluoroethylene Carbonate on the Formation of Solid Electrolyte Interphase Layer in Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28525-28532.	8.0	66
59	Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chemical Communications, 2018, 54, 8387-8390.	4.1	159
60	Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. Journal of Materials Chemistry A, 2018, 6, 16844-16848.	10.3	131
61	Electrochemistry and Solidâ€State Chemistry of NaMeO ₂ (Me = 3d Transition Metals). Advanced Energy Materials, 2018, 8, 1703415.	19.5	255
62	A novel K-ion battery: hexacyanoferrate(<scp>ii</scp>)/graphite cell. Journal of Materials Chemistry A, 2017, 5, 4325-4330.	10.3	396
63	Synthesis of hard carbon from argan shells for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9917-9928.	10.3	224
64	KVPO ₄ F and KVOPO ₄ toward 4 volt-class potassium-ion batteries. Chemical Communications, 2017, 53, 5208-5211.	4.1	262
65	P2- and P3-K _x CoO ₂ as an electrochemical potassium intercalation host. Chemical Communications, 2017, 53, 3693-3696.	4.1	214
66	Pâ€22-Na _{2/3} Mn _{0.9} Me _{0.1} O ₂ (Me = Mg, Ti, Co, Ni, Cu, and) Tj Materials, 2017, 29, 8958-8962.	ETQq0 0 6.7	0 rgBT /Ove 124
67	Origin of Enhanced Capacity Retention of P2-Type Na _{2/3} Ni _{1/3-} Na _{2/3} Cu <i>_x</i> Na _{2/3} Cu <i>_x</i> Na-lon Batteries. Journal of the Electrochemical Society, 2017, 164, A2368-A2373.	/ ≘ub >for	62
68	Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancerâ€"Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy?. Cancers, 2016, 8, 43.	3.7	6
69	Understanding the Structural Evolution and Redox Mechanism of a NaFeO ₂ â€"NaCoO ₂ Solid Solution for Sodiumâ€lon Batteries. Advanced Functional Materials, 2016, 26, 6047-6059.	14.9	132
70	Sodium and Manganese Stoichiometry of P2â€Type Na _{2/3} MnO ₂ . Angewandte Chemie, 2016, 128, 12952-12955.	2.0	41
71	Structural change during charge–discharge for iron substituted lithium manganese oxide. Journal of Power Sources, 2016, 318, 18-25.	7.8	13
72	Preparation and electrochemical properties of Li ₂ MoO ₃ /C composites for rechargeable Li-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 28556-28563.	2.8	19

#	Article	IF	CITATIONS
73	Effect of Hexafluorophosphate and Fluoroethylene Carbonate on Electrochemical Performance and the Surface Layer of Hard Carbon for Sodiumâ€lon Batteries. ChemElectroChem, 2016, 3, 1856-1867.	3.4	147
74	Sodium and Manganese Stoichiometry of P2â€Type Na _{2/3} MnO ₂ . Angewandte Chemie - International Edition, 2016, 55, 12760-12763.	13.8	217
7 5	Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. Journal of Materials Chemistry A, 2016, 4, 13183-13193.	10.3	83
76	Thermal Stability of Na _{<i>x</i>} CrO ₂ for Rechargeable Sodium Batteries; Studies by High-Temperature Synchrotron X-ray Diffraction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32292-32299.	8.0	36
77	Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Electrolyte Interface. Chemistry of Materials, 2016, 28, 1625-1635.	6.7	238
78	Understanding Particle-Size-Dependent Electrochemical Properties of Li ₂ MnO ₃ -Based Positive Electrode Materials for Rechargeable Lithium Batteries. Journal of Physical Chemistry C, 2016, 120, 875-885.	3.1	77
79	New Insight into Structural Evolution in Layered NaCrO ₂ during Electrochemical Sodium Extraction. Journal of Physical Chemistry C, 2015, 119, 166-175.	3.1	152
80	Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochemistry Communications, 2015, 60, 172-175.	4.7	882
81	Reviewâ€"Practical Issues and Future Perspective for Na-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2538-A2550.	2.9	579
82	Non-Surgical Breast-Conserving Treatment (KORTUC-BCT) Using a New Radiosensitization Method (KORTUC II) for Patients with Stage I or II Breast Cancer. Cancers, 2015, 7, 2277-2289.	3.7	17
83	Layered oxides as positive electrode materials for Na-ion batteries. MRS Bulletin, 2014, 39, 416-422.	3.5	208
84	Study of electrochemical alkali insertion into carbonaceous materials. , 2014, , .		1
85	P2-type Na <inf>x</inf> [Fe,Ni,Mn]O <inf>2</inf> for high capacity Na-ion batteries., 2014,,.		0
86	Rechargeable Na-ion batteries for large format applications. , 2014, , .		0
87	New O2/P2â€type Liâ€Excess Layered Manganese Oxides as Promising Multiâ€Functional Electrode Materials for Rechargeable Li/Na Batteries. Advanced Energy Materials, 2014, 4, 1301453.	19.5	307
88	Research Development on Sodium-Ion Batteries. Chemical Reviews, 2014, 114, 11636-11682.	47.7	4,970
89	A new electrode material for rechargeable sodium batteries: P2-type Na _{2/3} [Mg _{0.28} Mn _{0.72}]O ₂ with anomalously high reversible capacity. Journal of Materials Chemistry A, 2014, 2, 16851-16855.	10.3	284
90	P2-type Na _{2/3} Ni _{1/3} Mn _{2/3â^'x} Ti _x O ₂ as a new positive electrode for higher energy Na-ion batteries. Chemical Communications, 2014, 50, 3677-3680.	4.1	334

#	Article	IF	CITATIONS
91	Negative electrodes for Na-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 15007.	2.8	555
92	High-pressure synthesis and electrochemical properties of lithium transition metal oxides with layered rock-salt structure. Journal of Power Sources, 2014, 252, 1-7.	7.8	4
93	Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries. Electrochemistry Communications, 2014, 44, 66-69.	4.7	182
94	Na2CoPO4F as a High-voltage Electrode Material for Na-ion Batteries. Electrochemistry, 2014, 82, 909-911.	1.4	49
95	Early prediction of response to neoadjuvant chemotherapy in patients with breast cancer using diffusion-weighted imaging and gray-scale ultrasonography. Oncology Reports, 2014, 31, 1555-1560.	2.6	35
96	Direct synthesis of oxygen-deficient Li2MnO3â^'x for high capacity lithium battery electrodes. Journal of Power Sources, 2012, 216, 249-255.	7.8	113
97	Correlation of liver parenchymal gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid enhancement and liver function in humans with hepatocellular carcinoma. Oncology Letters, 2012, 3, 990-994.	1.8	29
98	Synthesis and electrochemical properties of nanosized LiFeO2 particles with a layered rocksalt structure for lithium batteries. Materials Research Bulletin, 2012, 47, 79-84.	5.2	21
99	Synthesis and electrode characteristics of solid solution LiMn1â^3xFexPO4(OH) (0â‰ x â‰ 0 .3) with tavorite structure for lithium batteries. Journal of Power Sources, 2012, 205, 394-401.	7.8	4
100	Safety and effectiveness of a new enzyme-targeting radiosensitization treatment (KORTUC II) for intratumoral injection for low-LET radioresistant tumors. International Journal of Oncology, 2011, 39, 553-60.	3.3	22
101	Power Doppler and gray-scale sonography standardized by BI-RADS for the differentiation of benign postoperative lesion and local recurrence after breast-conserving therapy. Oncology Reports, 2011, 26, 1357-62.	2.6	3
102	Structure and electrode reactions of layered rocksalt LiFeO2 nanoparticles for lithium battery cathode. Journal of Power Sources, 2011, 196, 6809-6814.	7.8	50
103	Evaluation of Changes in Tumor Shadows and Microcalcifications on Mammography Following KORTUC II, a New Radiosensitization Treatment without any Surgical Procedure for Elderly Patients with Stage I and II Breast Cancer. Cancers, 2011, 3, 3496-3505.	3.7	7
104	Role of diffusion-weighted imaging in evaluating therapeutic efficacy after transcatheter arterial chemoembolization for hepatocellular carcinoma. Oncology Reports, 2010, 24, 727-32.	2.6	41
105	Phase I study of a new radiosensitizer containing hydrogen peroxide and sodium hyaluronate for topical tumor injection: A new enzyme-targeting radiosensitization treatment, Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II). International Journal of Oncology, 2009, 34, 609-18.	3.3	33
106	Diagnostic accuracy of mammography, ultrasonography and magnetic resonance imaging in the detection of intraductal spread of breast cancer following neoadjuvant chemotherapy. Oncology Reports, 2007, 17, 915-8.	2.6	3
107	Facile Material Design Concept for Co-Free Lithium Excess Nickel-Manganese Oxide as High-Capacity Positive Electrode Material. Journal of the Electrochemical Society, 0, , .	2.9	2