Ann C Vandaele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1888292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mars system revealed by the Martian Moons eXploration mission. Earth, Planets and Space, 2022, 74, .	2.5	11
2	Explaining NOMAD D/H Observations by Cloudâ€Induced Fractionation of Water Vapor on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	11
3	Removal of straylight from ExoMars NOMAD-UVIS observations. Planetary and Space Science, 2022, 218, 105432.	1.7	3
4	Water vapor saturation and ice cloud occurrence in the atmosphere of Mars. Planetary and Space Science, 2022, 212, 105390.	1.7	8
5	Calibration of NOMAD on ExoMars Trace Gas Orbiter: Part 3 - LNO validation and instrument stability. Planetary and Space Science, 2022, 218, 105399.	1.7	4
6	Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 1 – The Solar Occultation channel. Planetary and Space Science, 2022, 218, 105411.	1.7	8
7	Vertical Aerosol Distribution and Mesospheric Clouds From ExoMars UVIS. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
8	Martian CO ₂ Ice Observation at High Spectral Resolution With ExoMars/TGO NOMAD. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
9	Calibration of the NOMAD-UVIS data. Planetary and Space Science, 2022, 218, 105504.	1.7	5
10	Variations in Vertical CO/CO ₂ Profiles in the Martian Mesosphere and Lower Thermosphere Measured by the ExoMars TGO/NOMAD: Implications of Variations in Eddy Diffusion Coefficient. Geophysical Research Letters, 2022, 49, .	4.0	7
11	Density and Temperature of the Upper Mesosphere and Lower Thermosphere of Mars Retrieved From the OI 557.7Anm Dayglow Measured by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
12	The Mars Oxygen Visible Dayglow: A Martian Year of NOMAD/UVIS Observations. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	2
13	Planetâ€Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm. Geophysical Research Letters, 2022, 49, .	4.0	7
14	The Deuterium Isotopic Ratio of Water Released From the Martian Caps as Measured With TGO/NOMAD. Geophysical Research Letters, 2022, 49, .	4.0	15
15	Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 2021, 357, 114266.	2.5	27
16	Impact of gradients at the martian terminator on the retrieval of ozone from SPICAM/MEx. Icarus, 2021, 353, 113598.	2.5	8
17	Radiation Environment and Doses on Mars at Oxia Planum and Mawrth Vallis: Support for Exploration at Sites With High Biosignature Preservation Potential. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006488.	3.6	14
18	Transient HCl in the atmosphere of Mars. Science Advances, 2021, 7, .	10.3	37

#	Article	IF	CITATIONS
19	Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD. Science Advances, 2021, 7, .	10.3	31
20	Seasonal and Spatial Variability of Carbon Monoxide (CO) in the Martian Atmosphere From PFS/MEX Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006480.	3.6	6
21	First Observation of the Oxygen 630Ânm Emission in the Martian Dayglow. Geophysical Research Letters, 2021, 48, e2020GL092334.	4.0	8
22	Exploiting night-time averaged spectra from PFS/MEX shortwave channel. Part 1: Temperature retrieval from the CO2 ν23 band. Planetary and Space Science, 2021, 198, 105186.	1.7	0
23	Probing the Atmospheric Cl Isotopic Ratio on Mars: Implications for Planetary Evolution and Atmospheric Chemistry. Geophysical Research Letters, 2021, 48, e2021GL092650.	4.0	7
24	Exploiting night-time averaged spectra from PFS/MEX shortwave channel. Part 2: Near-surface CO retrievals. Planetary and Space Science, 2021, 199, 105188.	1.7	0
25	Determination of the Venus eddy diffusion profile from CO and CO2 profiles using SOIR/Venus Express observations. Icarus, 2021, 361, 114388.	2.5	6
26	Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD. Geophysical Research Letters, 2021, 48, e2021GL092506.	4.0	15
27	The climatology of carbon monoxide on Mars as observed by NOMAD nadir-geometry observations. Icarus, 2021, 362, 114404.	2.5	11
28	No evidence of phosphine in the atmosphere of Venus from independent analyses. Nature Astronomy, 2021, 5, 631-635.	10.1	50
29	Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 2021, 5, 1036-1042.	10.1	40
30	Enhanced water loss from the martian atmosphere during a regional-scale dust storm and implications for long-term water loss. Earth and Planetary Science Letters, 2021, 571, 117109.	4.4	22
31	Phosphine in Venus' atmosphere: Detection attempts and upper limits above the cloud top assessed from the SOIR/VEx spectra. Astronomy and Astrophysics, 2021, 645, L4.	5.1	28
32	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 2. The Highâ€Altitude Layers of Atmospheric Ozone. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006834.	3.6	14
33	A Global and Seasonal Perspective of Martian Water Vapor From ExoMars/NOMAD. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	8
34	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 1. Seasonal Variation and Comparison to Water. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006837.	3.6	18
35	First Detection and Thermal Characterization of Terminator CO ₂ Ice Clouds With ExoMars/NOMAD. Geophysical Research Letters, 2021, 48, .	4.0	12
36	Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 2 – The Limb, Nadir and Occultation (LNO) channel. Planetary and Space Science, 2021, , 105410.	1.7	3

#	Article	IF	CITATIONS
37	Explanation for the Increase in Highâ€Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084354.	4.0	62
38	Strong Variability of Martian Water Ice Clouds During Dust Storms Revealed From ExoMars Trace Gas Orbiter/NOMAD. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006250.	3.6	39
39	Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 2020, 4, 1049-1052.	10.1	13
40	SOIR/VEx observations of water vapor at the terminator in the Venus mesosphere. Icarus, 2020, 346, 113819.	2.5	15
41	UV/Vis+ photochemistry database: Structure, content and applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107056.	2.3	14
42	Virtual European Solar & Planetary Access (VESPA): A Planetary Science Virtual Observatory Cornerstone. Data Science Journal, 2020, 19, .	1.3	7
43	Retrieval and characterization of carbon monoxide (CO) vertical profiles in the Martian atmosphere from observations of PFS/MEX. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 238, 106498.	2.3	6
44	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	27.8	111
45	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
46	Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2019, 124, 3482-3497.	3.6	88
47	Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 2019, 321, 671-690.	2.5	32
48	The VenSpec suite on the ESA EnVision mission to Venus. , 2019, , .		16
49	An uppermost haze layer above 100Âkm found over Venus by the SOIR instrument onboard Venus Express. Earth, Planets and Space, 2019, 71, .	2.5	4
50	CASTAway: An asteroid main belt tour and survey. Advances in Space Research, 2018, 62, 1998-2025.	2.6	18
51	Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	13
52	Composition and Chemistry of the Neutral Atmosphere of Venus. Space Science Reviews, 2018, 214, 1.	8.1	82
53	VESPA: A community-driven Virtual Observatory in Planetary Science. Planetary and Space Science, 2018, 150, 65-85.	1.7	28
54	Description, accessibility and usage of SOIR/Venus Express atmospheric profiles of Venus distributed in VESPA (Virtual European Solar and Planetary Access). Planetary and Space Science, 2018, 150, 60-64	1.7	8

#	Article	IF	CITATIONS
55	Long term evolution of temperature in the venus upper atmosphere at the evening and morning terminators. Icarus, 2018, 299, 370-385.	2.5	3
56	Methane on Mars and Habitability: Challenges and Responses. Astrobiology, 2018, 18, 1221-1242.	3.0	50
57	NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance. Space Science Reviews, 2018, 214, 1.	8.1	95
58	Stringent upper limit of CH ₄ on Mars based on SOFIA/EXES observations. Astronomy and Astrophysics, 2018, 610, A78.	5.1	10
59	The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 2017, 294, 124-155.	2.5	34
60	Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra. Planetary and Space Science, 2017, 142, 9-25.	1.7	36
61	Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability. Icarus, 2017, 295, 16-33.	2.5	47
62	Sulfur dioxide in the Venus Atmosphere: II. Spatial and temporal variability. Icarus, 2017, 295, 1-15.	2.5	53
63	Two test-cases for synergistic detections in the Martian atmosphere: Carbon monoxide and methane. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189, 86-104.	2.3	7
64	SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere. Icarus, 2017, 297, 195-216.	2.5	64
65	Fourier Transform Spectroscopy of two trace gases namely Methane and Carbon monoxide for planetary and atmospheric research application. Journal of Physics: Conference Series, 2017, 810, 012008.	0.4	0
66	Retrieval and validation of MetOp/IASI methane. Atmospheric Measurement Techniques, 2017, 10, 4623-4638.	3.1	16
67	NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel. Applied Optics, 2017, 56, 2771.	2.1	40
68	Improved algorithm for the transmittance estimation of spectra obtained with SOIR/Venus Express. Applied Optics, 2016, 55, 9275.	2.1	21
69	Unique Spectroscopy and Imaging of Mars with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2016, 128, 018004.	3.1	5
70	Multilayer modeling of the aureole photometry during the Venus transit: comparison between SDO/HMI and VEx/SOIR data. Astronomy and Astrophysics, 2016, 595, A115.	5.1	5
71	Carbon monoxide observed in Venus' atmosphere with SOIR/VEx. Icarus, 2016, 272, 48-59.	2.5	15
72	Optical and radiometric models of the NOMAD instrument part II: the infrared channels - SO and LNO. Optics Express, 2016, 24, 3790.	3.4	25

#	Article	IF	CITATIONS
73	Contribution from SOIR/VEX to the updated Venus International Reference Atmosphere (VIRA). Advances in Space Research, 2016, 57, 443-458.	2.6	15
74	SINBAD electronic models of the interface and control system for the NOMAD spectrometer on board of ESA ExoMars Trace Gas Orbiter mission. Proceedings of SPIE, 2016, , .	0.8	0
75	PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS. Origins of Life and Evolution of Biospheres, 2016, 46, 369-384.	1.9	2
76	Expected performances of the NOMAD/ExoMars instrument. Planetary and Space Science, 2016, 124, 94-104.	1.7	31
77	Aerosol properties in the upper haze of Venus from SPICAV IR data. Icarus, 2016, 277, 154-170.	2.5	53
78	CO2 pressure broadening and shift coefficients for the 2–0 band of 12C16O. Journal of Molecular Spectroscopy, 2016, 326, 60-72.	1.2	9
79	SINBAD flight software, the on-board software of NOMAD in ExoMars 2016. Proceedings of SPIE, 2016, ,	0.8	Ο
80	Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express. Planetary and Space Science, 2015, 113-114, 193-204.	1.7	46
81	Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. Optics Express, 2015, 23, 30028.	3.4	26
82	Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planetary and Space Science, 2015, 113-114, 321-335.	1.7	37
83	Carbon monoxide short term variability observed on Venus with SOIR/VEX. Planetary and Space Science, 2015, 113-114, 237-255.	1.7	35
84	Upper atmosphere temperature structure at the Venusian terminators: A comparison of SOIR and VTGCM results. Planetary and Space Science, 2015, 113-114, 336-346.	1.7	21
85	Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles. Planetary and Space Science, 2015, 113-114, 205-218.	1.7	47
86	Update of the Venus density and temperature profiles at high altitude measured by SOIR on board Venus Express. Planetary and Space Science, 2015, 113-114, 309-320.	1.7	59
87	Hydrogen halides measurements in the Venus mesosphere retrieved from SOIR on board Venus express. Planetary and Space Science, 2015, 113-114, 264-274.	1.7	41
88	Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express. Planetary and Space Science, 2015, 113-114, 347-358.	1.7	38
89	Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck. Icarus, 2015, 258, 309-336.	2.5	35
90	NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels. Applied Optics, 2015, 54, 8494.	2.1	58

#	Article	IF	CITATIONS
91	Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planetary and Space Science, 2015, 119, 233-249.	1.7	77
92	CO2-broadening coefficients in the ν4 fundamental band of methane at room temperature and application to CO2-rich planetary atmospheres. Journal of Molecular Spectroscopy, 2014, 297, 35-40.	1.2	19
93	A database of water transitions from experiment and theory (IUPAC Technical Report). Pure and Applied Chemistry, 2014, 86, 71-83.	1.9	76
94	IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D2160, D2170, and D2180. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 142, 93-108.	2.3	80
95	Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 114, 29-41.	2.3	8
96	IUPAC critical evaluation of the rotational–vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117, 29-58.	2.3	215
97	Retrieval of desert dust aerosol vertical profiles from IASI measurements in the TIR atmospheric window. Atmospheric Measurement Techniques, 2013, 6, 2577-2591.	3.1	39
98	Improved calibration of SOIR/Venus Express spectra. Optics Express, 2013, 21, 21148.	3.4	30
99	From meteorites to evolution and habitability of planets. Planetary and Space Science, 2012, 72, 3-17.	1.7	30
100	Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: Carbon dioxide measurements at the Venus terminator. Journal of Geophysical Research, 2012, 117, .	3.3	43
101	Optical extinction due to aerosols in the upper haze of Venus: Four years of SOIR/VEX observations from 2006 to 2010. Icarus, 2012, 217, 875-881.	2.5	54
102	CO2 pressure broadening and shift coefficients for the 1–0 band of HCl and DCl. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 1092-1101.	2.3	33
103	High resolution Fourier transform spectroscopy of HD16O: Line positions, absolute intensities and self broadening coefficients in the 8800–11,600cmâ"1 spectral region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 878-888.	2.3	11
104	The 2009 edition of the GEISA spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 2395-2445.	2.3	306
105	A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus, 2011, 216, 82-85.	2.5	81
106	Studying methane and other trace species in the Mars atmosphere using a SOIR instrument. Planetary and Space Science, 2011, 59, 292-298.	1.7	19
107	An investigation of the SO2 content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus, 2011, 211, 58-69.	2.5	86
108	Line positions and energy levels of the 18O substitutions from the HDO/D2O spectra between 5600 and 8800cmâ^'1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 2185-2196.	2.3	15

#	Article	IF	CITATIONS
109	IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part II. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 2160-2184.	2.3	178
110	Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: Retrieval technique. Journal of Geophysical Research, 2010, 115, .	3.3	37
111	UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 766-782.	2.3	50
112	Critical evaluation of measured rotation–vibration transitions and an experimental dataset of energy levels of HD18O. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 597-608.	2.3	30
113	Fourier transform measurements of SO2 absorption cross sections:. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 756-765.	2.3	52
114	The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 533-572.	2.3	3,129
115	IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers for H217O and H218O. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 573-596.	2.3	188
116	Fourier transform measurements of SO2 absorption cross sections: II Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 2115-2126.	2.3	105
117	A new method for determining the transfer function of an Acousto optical tunable filter. Optics Express, 2009, 17, 2005.	3.4	27
118	Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid″R onboard Venus Express. Journal of Geophysical Research, 2009, 114, .	3.3	81
119	First observation of 628 CO2 isotopologue band at 3.3 μm in the atmosphere of Venus by solar occultation from Venus Express. Icarus, 2008, 195, 28-33.	2.5	22
120	Line parameters for the 01111–00001 band of 12C16O18O from SOIR measurements of the Venus atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 895-905.	2.3	28
121	In-flight performance and calibration of SPICAV SOIR onboard Venus Express. Applied Optics, 2008, 47, 2252.	2.1	50
122	First observations of SO ₂ above Venus' clouds by means of Solar Occultation in the Infrared. Journal of Geophysical Research, 2008, 113, .	3.3	50
123	HDO and H ₂ O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express. Journal of Geophysical Research, 2008, 113, .	3.3	117
124	Composition of the Venus mesosphere measured by Solar Occultation at Infrared on board Venus Express. Journal of Geophysical Research, 2008, 113, .	3.3	86
125	Technical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data. Atmospheric Chemistry and Physics, 2008, 8, 3483-3508.	4.9	61
126	Fourier transform measurements of water vapor line parameters in the 4200–6600cmâ^'1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 105, 326-355.	2.3	117

#	Article	IF	CITATIONS
127	A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature, 2007, 450, 646-649.	27.8	161
128	HDO absorption spectrum above 11500cmâ^'1: Assignment and dynamics. Journal of Molecular Spectroscopy, 2007, 244, 87-101.	1.2	38
129	Boundary layer aerosol retrieval from thermal infrared nadir sounding – Preliminary results. Advances in Space Research, 2006, 37, 2160-2165.	2.6	1
130	Combined analysis of the high sensitivity Fourier transform and ICLAS-VeCSEL absorption spectra of D2O between 8800 and 9520cmâ^1. Journal of Molecular Spectroscopy, 2006, 238, 79-90.	1.2	13
131	Water vapour line assignments in the 9250–26000cmâ^'1 frequency range. Journal of Molecular Spectroscopy, 2005, 233, 68-76.	1.2	74
132	Line parameters of HDO from high-resolution Fourier transform spectroscopy in the 11500–23000cmâ^'1 spectral region. Journal of Molecular Spectroscopy, 2005, 232, 341-350.	1.2	22
133	An intercomparison campaign of ground-based UV-visible measurements of NO2, BrO, and OClO slant columns: Methods of analysis and results for NO2. Journal of Geophysical Research, 2005, 110, .	3.3	73
134	Absorption cross-sections of NO2: simulation of temperature and pressure effects. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 76, 373-391.	2.3	41
135	Water vapor line parameters in the 13000– region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 82, 99-117.	2.3	80
136	Water vapor line broadening and shifting by air in the 26,000– region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 82, 119-131.	2.3	49
137	Retrieval of atmospheric water vapor columns from FT visible solar absorption spectra and evaluation of spectroscopic databases. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 82, 133-150.	2.3	12
138	Laboratory Fourier Transform Spectroscopy of the Water Absorption continuum from 2500 to 22500 cmâ^'1. , 2003, , 213-221.		1
139	High-resolution Fourier transform measurement of the NO2visible and near-infrared absorption cross sections: Temperature and pressure effects. Journal of Geophysical Research, 2002, 107, ACH 3-1.	3.3	127
140	UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene. Environmental Pollution, 2002, 116, 193-201.	7.5	28
141	New water vapor line parameters in the 26000– region. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 74, 493-510.	2.3	103
142	<title>Absolute intensities of water vapor lines in the near-ultraviolet and visible regions</title> . , 2001, , .		5
143	Improved Data Set for the Herzberg Band Systems of 16O2. Journal of Molecular Spectroscopy, 2001, 207, 120.	1.2	13
144	The Visible and Near Ultraviolet Rotation–Vibration Spectrum of HOD. Journal of Molecular Spectroscopy, 2001, 209, 165-168.	1.2	16

#	Article	IF	CITATIONS
145	Fourier Transform Spectroscopy of the O2 Herzberg Bands. Journal of Molecular Spectroscopy, 2000, 202, 171-193.	1.2	23
146	Fourier Transform Spectroscopy of the O2 Herzberg Bands. III. Absorption Cross Sections of the Collision-Induced Bands and of the Herzberg Continuum. Journal of Molecular Spectroscopy, 2000, 204, 10-20.	1.2	37
147	The near ultraviolet rotation-vibration spectrum of water. Journal of Chemical Physics, 2000, 113, 1546-1552.	3.0	37
148	Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O. Environmental Science and Pollution Research, 1999, 6, 151-158.	5.3	117
149	Fourier Transform Spectroscopy of the O2 Herzberg Bands. Journal of Molecular Spectroscopy, 1999, 198, 136-162.	1.2	33
150	The near infrared, visible, and near ultraviolet overtone spectrum of water. Journal of Chemical Physics, 1999, 111, 2444-2450.	3.0	115
151	Development of Fourier transform spectrometry for UV–visible differential optical absorption spectroscopy measurements of tropospheric minor constituents. Applied Optics, 1999, 38, 2630.	2.1	21
152	The Wulf bands of oxygen. Chemical Physics Letters, 1998, 297, 293-299.	2.6	19
153	Measurements of the NO2 absorption cross-section from 42 000 cmâ^'1 to 10 000 cmâ^'1 (238–1000 nm) at 220 K and 294 K. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59, 171-184.	2.3	699
154	<title>Fourier transform spectroscopy of atmospheric gases</title> . , 1998, , .		0
155	<title>Using a Fourier transform spectrometer for tropospheric UV-visible DOAS measurements</title> . , 1998, 3493, 11.		0
156	Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature. Journal of Atmospheric Chemistry, 1996, 25, 289-305.	3.2	118
157	Intercomparison of instruments for tropospheric measurements using differential optical absorption spectroscopy. Journal of Atmospheric Chemistry, 1996, 23, 51-80.	3.2	31
158	SO2absorption cross section measurement in the UV using a Fourier transform spectrometer. Journal of Geophysical Research, 1994, 99, 25599.	3.3	177
159	<pre>NO<formula><inf><roman>2</roman>3</inf></formula>, NO<formula><inf><roman>2</roman></inf></formula>, H<formula><inf><roman>2</roman></inf></formula>CO, and SO<formula><inf><roman>2</roman></inf></formula> using Fourier transform</pre>		0
160	Spectroscopy (THE), 1993, Participation of women scientists in ESA solar system missions: a historical trend. Advances in Geosciences, 0, 53, 169-182.	12.0	1