Jakub W Narojczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1887918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Finite element analysis of auxetic plate deformation. Journal of Non-Crystalline Solids, 2008, 354, 4475-4480.	3.1	74
2	Lévy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo. Nature Communications, 2018, 9, 4539.	12.8	73
3	Elastic properties of degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature. Journal of Non-Crystalline Solids, 2010, 356, 2026-2032.	3.1	35
4	Negative Poisson's ratio behavior in the planar model of asymmetric trimers at zero temperature. Journal of Non-Crystalline Solids, 2008, 354, 4242-4248.	3.1	32
5	Auxetic Properties of a f.c.c. Crystal of Hard Spheres with an Array of [001]â€Nanochannels Filled by Hard Spheres of Another Diameter. Physica Status Solidi (B): Basic Research, 2019, 256, 1800611.	1.5	32
6	Wear Resistance Improvement of Cemented Tungsten Carbide Deep-Hole Drills after Ion Implantation. Materials, 2021, 14, 239.	2.9	23
7	Calculation of glass forming ranges in the ternary Y–Cu–Al system and its sub-binaries based on geometric and Miedema's models. Intermetallics, 2012, 26, 72-77.	3.9	21
8	Ion implantation of the tool's rake face for machining of the Ti-6Al-4V alloy. Journal of Manufacturing Processes, 2018, 34, 274-280.	5.9	19
9	Poisson's Ratio of the f.c.c. Hard Sphere Crystals with Periodically Stacked (001)-Nanolayers of Hard Spheres of Another Diameter. Materials, 2019, 12, 700.	2.9	19
10	Auxeticity of Yukawa Systems with Nanolayers in the (111) Crystallographic Plane. Materials, 2017, 10, 1338.	2.9	18
11	Stiffness of Synclastic Woodâ€Based Auxetic Sandwich Panels. Physica Status Solidi (B): Basic Research, 2020, 257, 1900749.	1.5	18
12	Influence of nanochannels on Poisson's ratio of degenerate crystal of hard dimers. Physica Status Solidi (B): Basic Research, 2016, 253, 1324-1330.	1.5	17
13	Unusual deformation mechanisms in carbon nanotube heterojunctions (5,5)–(10,10) under tensile loading. Physica Status Solidi (B): Basic Research, 2011, 248, 82-87.	1.5	16
14	Elastic properties of two-dimensional soft polydisperse trimers at zero temperature. Physica Status Solidi (B): Basic Research, 2007, 244, 943-954.	1.5	15
15	Auxeticity enhancement due to size polydispersity in fcc crystals of hard-core repulsive Yukawa particles. Soft Matter, 2017, 13, 7916-7921.	2.7	15
16	Auxetic Materials and Related Systems. Physica Status Solidi (B): Basic Research, 2012, 249, 1313-1314.	1.5	14
17	Elastic properties of the fcc crystals of soft spheres with size dispersion at zero temperature. Physica Status Solidi (B): Basic Research, 2008, 245, 606-613.	1.5	13
18	Selective enhancement of auxeticity through changing a diameter of nanochannels in Yukawa systems. Smart Materials and Structures, 2018, 27, 115021.	3.5	11

JAKUB W NAROJCZYK

#	Article	IF	CITATIONS
19	Removing Auxetic Properties in f.c.c. Hard Sphere Crystals by Orthogonal Nanochannels with Hard Spheres of Another Diameter. Materials, 2022, 15, 1134.	2.9	11
20	High Partial Auxeticity Induced by Nanochannels in [111]-Direction in a Simple Model with Yukawa Interactions. Materials, 2018, 11, 2550.	2.9	9
21	Elastic properties of two-dimensional soft discs of various diameters at zero temperature. Journal of Non-Crystalline Solids, 2006, 352, 4292-4298.	3.1	8
22	Cancellation of Auxetic Properties in F.C.C. Hard Sphere Crystals by Hybrid Layer-Channel Nanoinclusions Filled by Hard Spheres of Another Diameter. Materials, 2021, 14, 3008.	2.9	8
23	Self-filtering oscillations in carbon nanotube hetero-junctions. Nanotechnology, 2011, 22, 465501.	2.6	7
24	Partially Auxetic Properties of Face entered Cubic Hardâ€Sphere Crystals with Nanochannels of Different Sizes, Parallel to [001]â€Direction and Filled by Other Hard Spheres. Physica Status Solidi (B): Basic Research, 0, , 2200006.	1.5	7
25	Elasticity of periodic and aperiodic structures of polydisperse dimers in two dimensions at zero temperature. Physica Status Solidi (B): Basic Research, 2008, 245, 2463-2468.	1.5	6
26	Elastic properties of mono―and polydisperse twoâ€dimensional crystals of hardâ€core repulsive Yukawa particles. Physica Status Solidi (B): Basic Research, 2015, 252, 1508-1513.	1.5	6
27	Semi-Empirical Modelling of Glass Forming Ranges for Y-Co-Si System. Acta Physica Polonica A, 2014, 126, 62-63.	0.5	1
28	Auxetic Properties of a f.c.c. Crystal of Hard Spheres with an Array of [001]-Nanochannels Filled by Hard Spheres of Another Diameter (Phys. Status Solidi B 1/2019). Physica Status Solidi (B): Basic Research, 2019, 256, 1970012.	1.5	1
29	Pressure-Volume Work for Metastable Liquid and Solid at Zero Pressure. Entropy, 2018, 20, 338.	2.2	Ο