Xingxu Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1885034/publications.pdf

Version: 2024-02-01

30070 28297 12,474 155 54 105 citations h-index g-index papers 162 162 162 16193 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	IKZF3 deficiency potentiates chimeric antigen receptor T cells targeting solid tumors. Cancer Letters, 2022, 524, 121-130.	7.2	20
2	Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Research, 2022, 32, 383-400.	12.0	48
3	Towards precise large genomic fragment deletion. Trends in Genetics, 2022, 38, 214-215.	6.7	2
4	Bcl-3 promotes TNF-induced hepatocyte apoptosis by regulating the deubiquitination of RIP1. Cell Death and Differentiation, 2022, 29, 1176-1186.	11.2	12
5	The histone demethylase Kdm6b regulates the maturation and cytotoxicity of TCRαβ+CD8αα+ intestinal intraepithelial lymphocytes. Cell Death and Differentiation, 2022, 29, 1349-1363.	11.2	6
6	Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nature Communications, 2022, 13, 1454.	12.8	6
7	Genomic and Transcriptomic Analyses of Prime Editing Guide RNA–Independent Off-Target Effects by Prime Editors. CRISPR Journal, 2022, 5, 276-293.	2.9	31
8	An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 2022, 40, 1394-1402.	17.5	89
9	Base-edited cynomolgus monkeys mimic core symptoms of STXBP1 encephalopathy. Molecular Therapy, 2022, 30, 2163-2175.	8.2	8
10	Poly(beta-amino ester)-Based Nanoparticles Enable Nonviral Delivery of Base Editors for Targeted Tumor Gene Editing. Biomacromolecules, 2022, 23, 2116-2125.	5.4	10
11	Enhancement of prime editing via xrRNA motif-joined pegRNA. Nature Communications, 2022, 13, 1856.	12.8	51
12	Gene editing and its applications in biomedicine. Science China Life Sciences, 2022, 65, 660-700.	4.9	20
13	Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. Journal of Molecular Cell Biology, 2022, 14, .	3.3	25
14	PAM-Expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G Base Editors for Programmable Base Editing in Mycobacteria. Engineering, 2022, 15, 67-77.	6.7	3
15	PPARÎ ³ phase separates with RXRα at PPREs to regulate target gene expression. Cell Discovery, 2022, 8, 37.	6.7	9
16	Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. Molecular Therapy - Nucleic Acids, 2022, 28, 732-742.	5.1	8
17	Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA. Molecular Therapy, 2022, 30, 2923-2932.	8.2	11
18	Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human. Nature Communications, 2022, 13, .	12.8	7

#	Article	IF	Citations
19	Ultrasensitive SARS-CoV-2 diagnosis by CRISPR-based screen-printed carbon electrode. Analytica Chimica Acta, 2022, 1221, 340120.	5.4	20
20	IL-24 deficiency protects mice against bleomycin-induced pulmonary fibrosis by repressing IL-4-induced M2 program in macrophages. Cell Death and Differentiation, 2021, 28, 1270-1283.	11.2	56
21	Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences. BMC Biology, 2021, 19, 34.	3.8	5
22	Detection of the SARSâ€CoVâ€2 D614G mutation using engineered Cas12a guide RNA. Biotechnology Journal, 2021, 16, e2100040.	3.5	30
23	Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity. Nature Communications, 2021, 12, 2287.	12.8	38
24	Correction of the pathogenic mutation in TGM1 gene by adenine base editing in mutant embryos. Molecular Therapy, $2021, \ldots$	8.2	5
25	Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nature Cell Biology, 2021, 23, 552-563.	10.3	50
26	Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Research, 2021, 31, 1134-1136.	12.0	74
27	Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Reports, 2021, 36, 109635.	6.4	24
28	CABE-RY: A PAM-flexible dual-mutation base editor for reliable modeling of multi-nucleotide variants. Molecular Therapy - Nucleic Acids, 2021, 26, 114-121.	5.1	8
29	Avidityâ€Based Selection of Tissueâ€Specific CARâ€T Cells from a Combinatorial Cellular Library of CARs. Advanced Science, 2021, 8, 2003091.	11.2	8
30	Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes. CRISPR Journal, 2021, 4, 710-727.	2.9	1
31	Rapid and Sensitive Diagnosis of Drug-Resistant FLT3-F691L Mutation by CRISPR Detection. Frontiers in Molecular Biosciences, 2021, 8, 753276.	3.5	5
32	The m6A "reader―YTHDF1 promotes osteogenesis of bone marrow mesenchymal stem cells through translational control of ZNF839. Cell Death and Disease, 2021, 12, 1078.	6.3	26
33	Depletion of giant ANK2 in monkeys causes drastic brain volume loss. Cell Discovery, 2021, 7, 113.	6.7	4
34	Efficient DNA interrogation of SpCas9 governed by its electrostatic interaction with DNA beyond the PAM and protospacer. Nucleic Acids Research, 2021, 49, 12433-12444.	14.5	9
35	EasyCatch, a convenient, sensitive and specific CRISPR detection system for cancer gene mutations. Molecular Cancer, 2021, 20, 157.	19.2	12
36	A Recombinase Polymerase Amplification-Coupled Cas12a Mutant-Based Module for Efficient Detection of Streptomycin-Resistant Mutations in Mycobacterium tuberculosis. Frontiers in Microbiology, 2021, 12, 796916.	3.5	12

#	Article	IF	CITATIONS
37	Rapid and Specific Detection of Active SARS-CoV-2 With CRISPR/Cas12a. Frontiers in Microbiology, 2021, 12, 820698.	3.5	6
38	Intracellular XBP1-IL-24 axis dismantles cytotoxic unfolded protein response in the liver. Cell Death and Disease, 2020, 11, 17.	6.3	9
39	Efficient Gene Silencing by Adenine Base Editor-Mediated Start Codon Mutation. Molecular Therapy, 2020, 28, 431-440.	8.2	37
40	Increasing the targeting scope and efficiency of base editing with Proxyâ€BE strategy. FEBS Letters, 2020, 594, 1319-1328.	2.8	3
41	A Cas-embedding strategy for minimizing off-target effects of DNA base editors. Nature Communications, 2020, 11, 6073.	12.8	45
42	MeCas12a, a Highly Sensitive and Specific System for COVIDâ€19 Detection. Advanced Science, 2020, 7, 2001300.	11.2	91
43	Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Science Bulletin, 2020, 65, 1436-1439.	9.0	150
44	Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response. Cell Reports, 2020, 31, 107723.	6.4	62
45	High-resolution annotation of the mouse preimplantation embryo transcriptome using long-read sequencing. Nature Communications, 2020, 11, 2653.	12.8	17
46	Highly efficient generation of sheep with a defined FecBB mutation via adenine base editing. Genetics Selection Evolution, 2020, 52, 35.	3.0	21
47	Next-generation pathogen diagnosis with CRISPR/Cas-based detection methods. Emerging Microbes and Infections, 2020, 9, 1682-1691.	6.5	94
48	Locus-specific DNA methylation of Mecp2 promoter leads to autism-like phenotypes in mice. Cell Death and Disease, 2020, 11, 85.	6.3	30
49	Redesigning small ruminant genomes with CRISPR toolkit: Overview and perspectives. Theriogenology, 2020, 147, 25-33.	2.1	15
50	CRISPR/Cas12a technology combined with immunochromatographic strips for portable detection of African swine fever virus. Communications Biology, 2020, 3, 62.	4.4	114
51	Efficient generation of mouse models with the prime editing system. Cell Discovery, 2020, 6, 27.	6.7	146
52	Comparison of gene disruption induced by cytosine base editingâ€mediated iSTOP with CRISPR/Cas9â€mediated frameshift. Cell Proliferation, 2020, 53, e12820.	5.3	6
53	Programmable Câ€toâ€tI <scp>RNA</scp> editing using the human <scp>APOBEC</scp> 3A deaminase. EMBO Journal, 2020, 39, e104741.	7.8	35
54	<scp>REPAIR</scp> x, a specific yet highly efficient programmable AÂ>ÂI <scp>RNA</scp> base editor. EMBO Journal, 2020, 39, e104748.	7.8	22

#	Article	IF	CITATIONS
55	Dynamics of <i>Staphylococcus aureus</i> Cas9 in <scp>DNA</scp> target Association and Dissociation. EMBO Reports, 2020, 21, e50184.	4.5	20
56	Improving Editing Efficiency for the Sequences with NGH PAM Using xCas9-Derived Base Editors. Molecular Therapy - Nucleic Acids, 2019, 17, 626-635.	5.1	11
57	Efficient Generation of Pathogenic A-to-G Mutations in Human Tripronuclear Embryos via ABE-Mediated Base Editing. Molecular Therapy - Nucleic Acids, 2019, 17, 289-296.	5.1	16
58	Base pair editing in goat: nonsense codon introgression into <i><scp>FGF</scp>5</i> results in longer hair. FEBS Journal, 2019, 286, 4675-4692.	4.7	25
59	Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regeneration, 2019, 8, 33-41.	2.6	24
60	Construction and optimization of a base editor based on the MS2 system. Animal Models and Experimental Medicine, 2019, 2, 185-190.	3.3	6
61	The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation. Science Advances, 2019, 5, eaaw9807.	10.3	29
62	Overexpression of MicroRNA-10a in Germ Cells Causes Male Infertility by Targeting Rad51 in Mouse and Human. Frontiers in Physiology, 2019, 10, 765.	2.8	34
63	Developing ABEmax-NG with Precise Targeting and Expanded Editing Scope to Model Pathogenic Splice Site Mutations InÂVivo. IScience, 2019, 15, 640-648.	4.1	27
64	Deletion of miR-126a Promotes Hepatic Aging and Inflammation in a Mouse Model of Cholestasis. Molecular Therapy - Nucleic Acids, 2019, 16, 494-504.	5.1	19
65	Site-directed RNA editing (SDRE): Off-target effects and their countermeasures. Journal of Genetics and Genomics, 2019, 46, 531-535.	3.9	10
66	Efficient base editing in G/C-rich regions to model androgen insensitivity syndrome. Cell Research, 2019, 29, 174-176.	12.0	15
67	Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells. Human Gene Therapy, 2019, 30, 446-458.	2.7	103
68	$TGF\hat{I}^2$ signaling hyperactivation-induced tumorigenicity during the derivation of neural progenitors from mouse ESCs. Journal of Molecular Cell Biology, 2018, 10, 216-228.	3.3	8
69	Production of Wilson Disease Model Rabbits with Homology-Directed Precision Point Mutations in the ATP7B Gene Using the CRISPR/Cas9 System. Scientific Reports, 2018, 8, 1332.	3.3	18
70	Generation of a precise Oct4-hrGFP knockin cynomolgus monkey model via CRISPR/Cas9-assisted homologous recombination. Cell Research, 2018, 28, 383-386.	12.0	42
71	Base editing with a Cpf1–cytidine deaminase fusion. Nature Biotechnology, 2018, 36, 324-327.	17.5	333
72	APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks. Nature Structural and Molecular Biology, 2018, 25, 45-52.	8.2	42

#	Article	IF	CITATIONS
73	Trio-Based Deep Sequencing Reveals a Low Incidence of Off-Target Mutations in the Offspring of Genetically Edited Goats. Frontiers in Genetics, 2018, 9, 449.	2.3	33
74	m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature, 2018, 563, 249-253.	27.8	354
75	Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats. Cell Discovery, 2018, 4, 39.	6.7	35
76	Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep. BMC Genomics, 2018, 19, 397.	2.8	36
77	Generation of isogenic single and multiplex gene knockout mice by base editing-induced STOP. Science Bulletin, 2018, 63, 1101-1107.	9.0	9
78	Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer. Journal of Translational Medicine, 2018, 16, 41.	4.4	16
79	Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nature Biotechnology, 2018, 36, 946-949.	17.5	190
80	Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos. Molecular Therapy, 2018, 26, 2631-2637.	8.2	120
81	Efficient generation of goats with defined point mutation (1397V) in GDF9 through CRISPR/Cas9. Reproduction, Fertility and Development, 2018, 30, 307.	0.4	36
82	BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Research, 2018, 28, 855-861.	12.0	99
83	Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nature Communications, 2018, 9, 2338.	12.8	120
84	Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reproduction, Fertility and Development, 2018, 30, 1616.	0.4	33
85	Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. Journal of Clinical Investigation, 2018, 129, 137-149.	8.2	242
86	Base editors: a powerful tool for generating animal models of human diseases. Cell Stress, 2018, 2, 242-245.	3.2	2
87	A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse. Scientific Reports, 2017, 7, 517.	3.3	25
88	Requirement for CCNB1 in mouse spermatogenesis. Cell Death and Disease, 2017, 8, e3142-e3142.	6. 3	34
89	Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein and Cell, 2017, 8, 776-779.	11.0	68
90	3D Chromatin Structures of Mature Gametes and Structural Reprogramming during Mammalian Embryogenesis. Cell, 2017, 170, 367-381.e20.	28.9	415

#	Article	IF	Citations
91	Building Cre Knockin Rat Lines Using CRISPR/Cas9. Methods in Molecular Biology, 2017, 1642, 37-52.	0.9	10
92	Gene knockout of Zmym3 in mice arrests spermatogenesis at meiotic metaphase with defects in spindle assembly checkpoint. Cell Death and Disease, 2017, 8, e2910-e2910.	6.3	28
93	CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncolmmunology, 2017, 6, e1249558.	4.6	72
94	YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. ELife, 2017, 6, .	6.0	815
95	Overexpression of Human-Derived DNMT3A Induced Intergenerational Inheritance of Active DNA Methylation Changes in Rat Sperm. Frontiers in Genetics, 2017, 8, 207.	2.3	3
96	Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget, 2017, 8, 98823-98836.	1.8	2
97	Generation of an Oocyte-Specific Cas9 Transgenic Mouse for Genome Editing. PLoS ONE, 2016, 11, e0154364.	2.5	10
98	Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers. PLoS ONE, 2016, 11, e0164640.	2.5	75
99	Efficient generation of B2m-null pigs via injection of zygote with TALENs. Scientific Reports, 2016, 6, 38854.	3.3	31
100	Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes. Human Mutation, 2016, 37, 110-118.	2.5	63
101	Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biology, 2016, 13, 605-612.	3.1	62
102	A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model. Biology Open, 2016, 5, 979-986.	1.2	15
103	Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Scientific Reports, 2016, 6, 32271.	3.3	68
104	CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Scientific Reports, 2016, 6, 20070.	3.3	237
105	H3K4 Methyltransferase Set1a Is A Key Oct4 Coactivator Essential for Generation of Oct4 Positive Inner Cell Mass. Stem Cells, 2016, 34, 565-580.	3.2	49
106	Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports, 2015, 5, 13878.	3.3	151
107	Production of Human Albumin in Pigs Through CRISPR/Cas9-Mediated Knockin of Human cDNA into Swine Albumin Locus in the Zygotes. Scientific Reports, 2015, 5, 16705.	3.3	73
108	Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling. Stem Cell Reports, 2015, 5, 816-828.	4.8	34

#	Article	IF	CITATIONS
109	PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget, 2015, 6, 9420-9433.	1.8	27
110	Functional annotation of cis-regulatory elements in human cells by dCas9/sgRNA. Cell Research, 2015, 25, 877-880.	12.0	5
111	Off-target mutations are rare in Cas9-modified mice. Nature Methods, 2015, 12, 479-479.	19.0	171
112	Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys. Cell Research, 2015, 25, 262-265.	12.0	32
113	PTPROt maintains T cell immunity in the microenvironment of hepatocellular carcinoma. Journal of Molecular Cell Biology, 2015, 7, 338-350.	3.3	11
114	Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Scientific Reports, 2015, 5, 8256.	3.3	104
115	TP53 loss creates therapeutic vulnerability inÂcolorectal cancer. Nature, 2015, 520, 697-701.	27.8	192
116	Opposing Roles for the IncRNA Haunt and Its Genomic Locus in Regulating HOXA Gene Activation during Embryonic Stem Cell Differentiation. Cell Stem Cell, 2015, 16, 504-516.	11.1	247
117	CRISPR/Cas9-mediated <i>Dax1</i> knockout in the monkey recapitulates human AHC-HH. Human Molecular Genetics, 2015, 24, 7255-7264.	2.9	71
118	Heritable Multiplex Genetic Engineering in Rats Using CRISPR/Cas9. PLoS ONE, 2014, 9, e89413.	2.5	90
119	sgRNAcas9: A Software Package for Designing CRISPR sgRNA and Evaluating Potential Off-Target Cleavage Sites. PLoS ONE, 2014, 9, e100448.	2.5	327
120	Survival and Inflammation Promotion Effect of PTPRO in Fulminant Hepatitis Is Associated with NF-κB Activation. Journal of Immunology, 2014, 193, 5161-5170.	0.8	21
121	Generation of <i>e<scp>GFP</scp></i> and <i>Cre</i> knockin rats by <scp>CRISPR</scp> /Cas9. FEBS Journal, 2014, 281, 3779-3790.	4.7	66
122	Dual sgRNAs facilitate CRISPR/Cas9â€mediated mouse genome targeting. FEBS Journal, 2014, 281, 1717-1725.	4.7	122
123	Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 2014, 11, 399-402.	19.0	716
124	Equatorin is not essential for acrosome biogenesis but is required for the acrosome reaction. Biochemical and Biophysical Research Communications, 2014, 444, 537-542.	2.1	27
125	Programming and Inheritance of Parental DNA Methylomes in Mammals. Cell, 2014, 157, 979-991.	28.9	451
126	Generating rats with conditional alleles using CRISPR/Cas9. Cell Research, 2014, 24, 122-125.	12.0	169

#	Article	IF	Citations
127	One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering. International Journal of Biochemistry and Cell Biology, 2014, 46, 49-55.	2.8	110
128	Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos. Cell, 2014, 156, 836-843.	28.9	930
129	Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biology, 2014, 11, 829-835.	3.1	148
130	Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Letters, 2014, 588, 3954-3958.	2.8	96
131	Genome modification by <scp>CRISPR</scp> /Cas9. FEBS Journal, 2014, 281, 5186-5193.	4.7	139
132	PTPRO plays a dual role in hepatic ischemia reperfusion injury through feedback activation of NF-κB. Journal of Hepatology, 2014, 60, 306-312.	3.7	30
133	A Newly Identified MicroRNA, mmu-miR-7578, Functions as a Negative Regulator on Inflammatory Cytokines Tumor Necrosis Factor- \hat{l}_{\pm} and Interleukin-6 via Targeting Egr1 in Vivo. Journal of Biological Chemistry, 2013, 288, 4310-4320.	3.4	25
134	Transcriptional cooperation between p53 and NF-κB p65 regulates microRNA-224 transcription in mouse ovarian granulosa cells. Molecular and Cellular Endocrinology, 2013, 370, 119-129.	3.2	70
135	Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research, 2013, 23, 720-723.	12.0	504
136	Sperm, but Not Oocyte, DNA Methylome Is Inherited by Zebrafish Early Embryos. Cell, 2013, 153, 773-784.	28.9	428
137	An Androgen Receptor-MicroRNA-29a Regulatory Circuitry in Mouse Epididymis. Journal of Biological Chemistry, 2013, 288, 29369-29381.	3.4	32
138	Estrogen-sensitive PTPRO expression represses hepatocellular carcinoma progression by control of STAT3. Hepatology, 2013, 57, 678-688.	7.3	74
139	Efficient Knockin Mouse Generation by ssDNA Oligonucleotides and Zinc-Finger Nuclease Assisted Homologous Recombination in Zygotes. PLoS ONE, 2013, 8, e77696.	2.5	15
140	MicroRNA-29a Inhibited Epididymal Epithelial Cell Proliferation by Targeting Nuclear Autoantigenic Sperm Protein (NASP)*. Journal of Biological Chemistry, 2012, 287, 10189-10199.	3.4	34
141	Synergistic Effect of SRY and Its Direct Target, WDR5, on Sox9 Expression. PLoS ONE, 2012, 7, e34327.	2.5	38
142	Separase Phosphosite Mutation Leads to Genome Instability and Primordial Germ Cell Depletion during Oogenesis. PLoS ONE, 2011, 6, e18763.	2.5	10
143	BRIT1/MCPH1 Is Essential for Mitotic and Meiotic Recombination DNA Repair and Maintaining Genomic Stability in Mice. PLoS Genetics, 2010, 6, e1000826.	3.5	86
144	Preimplantation Mouse Embryos Depend on Inhibitory Phosphorylation of Separase To Prevent Chromosome Missegregation. Molecular and Cellular Biology, 2009, 29, 1498-1505.	2.3	34

#	Article	lF	CITATIONS
145	The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nature Cell Biology, 2008, 10, 1083-1089.	10.3	142
146	Inhibitory Phosphorylation of Separase Is Essential for Genome Stability and Viability of Murine Embryonic Germ Cells. PLoS Biology, 2008, 6, e15.	5.6	40
147	Resveratrol-induced mitochondrial dysfunction and apoptosis are associated with Ca2+ and mCICR-mediated MPT activation in HepG2 cells. Molecular and Cellular Biochemistry, 2007, 302, 99-109.	3.1	57
148	mCICR is required for As2O3-induced permeability transition pore opening and cytochrome c release from mitochondria. Molecular and Cellular Biochemistry, 2005, 277, 33-42.	3.1	13
149	Securin and Separase Phosphorylation Act Redundantly to Maintain Sister Chromatid Cohesion in Mammalian Cells. Molecular Biology of the Cell, 2005, 16, 4725-4732.	2.1	58
150	DNA damage-induced mitotic catastrophe is mediated by the Chk1-dependent mitotic exit DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1065-1070.	7.1	131
151	Dynamic gene expression during the onset of myoblast differentiation in vitro. Genomics, 2003, 82, 109-121.	2.9	75
152	Dependence of permeability transition pore opening and cytochrome C release from mitochondria on mitochondria energetic status. Molecular and Cellular Biochemistry, 2001, 224, 1-7.	3.1	27
153	Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts. Current Biology, 2001, 11, 1197-1201.	3.9	99
154	Study on the relationship between calcium-induced calcium release from mitochondria and PTP opening. Molecular and Cellular Biochemistry, 2000, 213, 29-35.	3.1	22
155	Characterization of tBid-induced cytochromecrelease from mitochondria and liposomes. FEBS Letters, 2000, 472, 293-296.	2.8	36