Baoming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1885026/publications.pdf Version: 2024-02-01

BAOMING WANG

#	Article	IF	CITATIONS
1	Revitalizing interface in protonic ceramic cells by acid etch. Nature, 2022, 604, 479-485.	27.8	132
2	Anodic Shock-Triggered Exsolution of Metal Nanoparticles from Perovskite Oxide. Journal of the American Chemical Society, 2022, 144, 7657-7666.	13.7	15
3	Real-time imaging of nanoscale electrochemical Ni etching under thermal conditions. Chemical Science, 2021, 12, 5259-5268.	7.4	10
4	In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering. Nature Communications, 2021, 12, 6784.	12.8	16
5	Unpredicted Internal Geometric Reconfiguration of an Enclosed Space Formed by Heteroepitaxy. Nano Letters, 2020, 20, 540-545.	9.1	6
6	Recrystallization mechanisms of Zircaloy-4 alloy annealed by electric current. Journal of Alloys and Compounds, 2020, 820, 153409.	5.5	20
7	Superconducting Cu/Nb nanolaminate by coded accumulative roll bonding and its helium damage characteristics. Acta Materialia, 2020, 197, 212-223.	7.9	41
8	First-order amorphous-to-amorphous phase transitions during lithiation of silicon thin films. Physical Review Materials, 2020, 4, .	2.4	5
9	Kinetic Study of Lithiation-Induced Phase Transitions in Amorphous Germanium Thin Films. Journal of the Electrochemical Society, 2020, 167, 090557.	2.9	9
10	Application of In Situ TEM to Investigate Irradiation Creep in Nanocrystalline Zirconium. Jom, 2019, 71, 3350-3357.	1.9	10
11	Observation of room-temperature polar skyrmions. Nature, 2019, 568, 368-372.	27.8	417
12	Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nature Energy, 2019, 4, 1049-1058.	39.5	248
13	Low temperature annealing of metals with electrical wind force effects. Journal of Materials Science and Technology, 2019, 35, 465-472.	10.7	38
14	Mechanical stress effects on electrical breakdown of freestanding GaN thin films. Microelectronics Reliability, 2018, 81, 181-185.	1.7	7
15	Observation of Quasi-Two-Dimensional Polar Domains and Ferroelastic Switching in a Metal, Ca ₃ Ru ₂ O ₇ . Nano Letters, 2018, 18, 3088-3095.	9.1	62
16	Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. ACS Nano, 2018, 12, 965-975.	14.6	172
17	Current density effects on the microstructure of zirconium thin films. Scripta Materialia, 2018, 144, 18-21.	5.2	33
18	Two-dimensional tantalum disulfide: controlling structure and properties via synthesis. 2D Materials, 2018, 5, 025001.	4.4	31

BAOMING WANG

#	Article	IF	CITATIONS
19	Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides. Nanoscale, 2018, 10, 336-341.	5.6	38
20	Transformation of 2D group-III selenides to ultra-thin nitrides: enabling epitaxy on amorphous substrates. Nanotechnology, 2018, 29, 47LT02.	2.6	6
21	In situ transmission electron microscopy of transistor operation and failure. Nanotechnology, 2018, 29, 31LT01.	2.6	9
22	Departing from the mutual exclusiveness of strength and ductility in nanocrystalline metals with vacancy induced plasticity. Scripta Materialia, 2018, 157, 39-43.	5.2	6
23	Electro-graphitization and exfoliation of graphene on carbon nanofibers. Carbon, 2017, 117, 201-207.	10.3	17
24	Self-ion irradiation effects on mechanical properties of nanocrystalline zirconium films. MRS Communications, 2017, 7, 595-600.	1.8	4
25	In-situ TEM study of domain switching in GaN thin films. Applied Physics Letters, 2017, 111, 113103.	3.3	1
26	Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films. Thin Solid Films, 2017, 638, 17-21.	1.8	2
27	Role of sulphur atoms on stress relaxation and crack propagation in monolayer MoS ₂ . Nanotechnology, 2017, 28, 365703.	2.6	17
28	Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS2. Scientific Reports, 2017, 7, 16938.	3.3	23
29	Grain size-induced thermo-mechanical coupling in zirconium thin films. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1197-1204.	3.6	8
30	High temperature and current density induced degradation of multi-layer graphene. Applied Physics Letters, 2015, 107, 163103.	3.3	3
31	In Situ Microstructural Control and Mechanical Testing Inside the Transmission Electron Microscope at Elevated Temperatures. Jom, 2015, 67, 1713-1720.	1.9	13
32	In situ degradation studies of two-dimensional WSe ₂ –graphene heterostructures. Nanoscale, 2015, 7, 14489-14495.	5.6	12
33	Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349, 613-617.	12.6	2,753
34	In-situ TEM mechanical testing of nanocrystalline zirconium thin films. Materials Letters, 2015, 152, 105-108.	2.6	11
35	Domain engineering of physical vapor deposited two-dimensional materials. Applied Physics Letters, 2014, 105, .	3.3	13
36	Grain growth in nanocrystalline nickel films at low temperature and stress. Scripta Materialia, 2014, 71, 1-4.	5.2	26

BAOMING WANG

#	Article	IF	CITATIONS
37	Low temperature viscoelasticity in nanocrystalline nickel films. Materials Letters, 2014, 118, 59-61.	2.6	2
38	Photo-sensitivity of large area physical vapor deposited mono and bilayer MoS2. Nano Convergence, 2014, 1, 22.	12.1	12
39	Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104, .	3.3	178
40	Resonance effects on the Raman spectra of graphene superlattices. Physical Review B, 2013, 88, .	3.2	128
41	Scalable Synthesis of Uniform Few-Layer Hexagonal Boron Nitride Dielectric Films. Nano Letters, 2013, 13, 276-281.	9.1	186
42	Effects of Pulse Electromagnetic Field on Corrosion Resistance of Al-5 % Cu Alloy. Journal of Low Temperature Physics, 2013, 170, 418-423.	1.4	1
43	Computational simulation of diffusion process in multicomponent and multiphase systems in diffusion bonding. Science and Technology of Welding and Joining, 2013, 18, 451-457.	3.1	7
44	Fluidic aligned, dense SWNTs arrays as potential die adhesive and thermal interface material. Soldering and Surface Mount Technology, 2013, 25, 45-50.	1.5	1
45	Hong <i>etÂal.</i> Reply:. Physical Review Letters, 2012, 109, .	7.8	3
46	Well Aligned Single-Walled Carbon Nanotube (SWNT) Film as a Building Block for MEMS/NEMS Devices. ECS Transactions, 2012, 44, 1381-1385.	0.5	0
47	Structure Refinement by a Liquid Metal Cooling Solidification Process for Single-Crystal Nickel-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 965-976.	2.2	53
48	Fluidic aligned, dense SWNTs arrays as potential die adhesive and thermal interface material. , 2011, , .		0

Fluidic aligned, dense SWNTs arrays as potential die adhesive and thermal interface material. , 2011, , . 48