Xinjiang Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1884827/publications.pdf

Version: 2024-02-01

257101 243296 2,262 46 24 44 h-index citations g-index papers 51 51 51 2546 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. Journal of Cell Biology, 2009, $186,201$ -209.	2.3	376
2	The Cation/Ca2+ Exchanger Superfamily: Phylogenetic Analysis and Structural Implications. Molecular Biology and Evolution, 2004, 21, 1692-1703.	3 . 5	211
3	CatSperÎ \P regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. ELife, 2017, 6, .	2.8	131
4	An Ancestral Deuterostome Family of Two-pore Channels Mediates Nicotinic Acid Adenine Dinucleotide Phosphate-dependent Calcium Release from Acidic Organelles. Journal of Biological Chemistry, 2010, 285, 2897-2901.	1.6	112
5	Molecular Cloning of a Third Member of the Potassium-dependent Sodium-Calcium Exchanger Gene Family,NCKX3. Journal of Biological Chemistry, 2001, 276, 23161-23172.	1.6	111
6	Molecular Cloning of a Sixth Member of the K+-dependent Na+/Ca2+ Exchanger Gene Family, NCKX6. Journal of Biological Chemistry, 2004, 279, 5867-5876.	1.6	104
7	Two-pore channels provide insight into the evolution of voltage-gated Ca ²⁺ and Na ⁺ channels. Science Signaling, 2014, 7, ra109.	1.6	98
8	Evolutionary Genomics Reveals Lineage-Specific Gene Loss and Rapid Evolution of a Sperm-Specific Ion Channel Complex: CatSpers and CatSperl ² . PLoS ONE, 2008, 3, e3569.	1.1	92
9	Ancestral Ca2+ Signaling Machinery in Early Animal and Fungal Evolution. Molecular Biology and Evolution, 2012, 29, 91-100.	3.5	89
10	Unicellular Ca2+ Signaling 'Toolkit' at the Origin of Metazoa. Molecular Biology and Evolution, 2008, 25, 1357-1361.	3. 5	85
11	Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium, 2015, 57, 222-230.	1.1	74
12	Molecular Evolution and Structural Analysis of the Ca2+ Release-Activated Ca2+ Channel Subunit, Orai. Journal of Molecular Biology, 2007, 368, 1284-1291.	2.0	58
13	Tripartite motif containing protein 27 negatively regulates CD4 T cells by ubiquitinating and inhibiting the class II PI3K-C2 \hat{I}^2 . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20072-20077.	3.3	57
14	Degeneration of an Intracellular Ion Channel in the Primate Lineage by Relaxation of Selective Constraints. Molecular Biology and Evolution, 2010, 27, 2352-2359.	3 . 5	56
15	Insights into the early evolution of animal calcium signaling machinery: A unicellular point of view. Cell Calcium, 2015, 57, 166-173.	1.1	54
16	Regulation of the epithelial Ca ²⁺ channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Molecular Biology of the Cell, 2014, 25, 1244-1250.	0.9	52
17	Early Evolution of the Eukaryotic Ca2+ Signaling Machinery: Conservation of the CatSper Channel Complex. Molecular Biology and Evolution, 2014, 31, 2735-2740.	3 . 5	44
18	Regulation of smooth muscle cells in development and vascular disease: current therapeutic strategies. Expert Review of Cardiovascular Therapy, 2006, 4, 789-800.	0.6	43

#	Article	IF	CITATIONS
19	Molecular Evolution and Functional Divergence of the Ca2+ Sensor Protein in Store-operated Ca2+ Entry: Stromal Interaction Molecule. PLoS ONE, 2007, 2, e609.	1.1	41
20	G Protein–Coupled Receptor Kinase-5 Attenuates Atherosclerosis by Regulating Receptor Tyrosine Kinases and 7-Transmembrane Receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 308-316.	1.1	38
21	Regulation of the Platelet-derived Growth Factor Receptor- \hat{l}^2 by G Protein-coupled Receptor Kinase-5 in Vascular Smooth Muscle Cells Involves the Phosphatase Shp2. Journal of Biological Chemistry, 2006, 281, 37758-37772.	1.6	36
22	Molecular Evolution of the Ankyrin Gene Family. Molecular Biology and Evolution, 2006, 23, 550-558.	3 . 5	35
23	Phosphatidylinositol-3-Kinase $C2\hat{l}^2$ and TRIM27 Function To Positively and Negatively Regulate IgE Receptor Activation of Mast Cells. Molecular and Cellular Biology, 2012, 32, 3132-3139.	1.1	28
24	Ancient Origin of Four-Domain Voltage-gated Na+ Channels Predates the Divergence of Animals and Fungi. Journal of Membrane Biology, 2012, 245, 117-123.	1.0	27
25	A Novel Topology and Redox Regulation of the Rat Brain K+-dependent Na+/Ca2+ Exchanger, NCKX2. Journal of Biological Chemistry, 2002, 277, 48923-48930.	1.6	26
26	P2X receptor homologs in basal fungi. Purinergic Signalling, 2012, 8, 11-13.	1.1	19
27	A plastid two-pore channel essential for inter-organelle communication and growth of Toxoplasma gondii. Nature Communications, 2021, 12, 5802.	5 . 8	19
28	Reciprocal Regulation of the Platelet-Derived Growth Factor Receptor-β and G Protein-Coupled Receptor Kinase 5 by Cross-Phosphorylation: Effects on Catalysis. Molecular Pharmacology, 2009, 75, 626-636.	1.0	18
29	Evolutionary genomics reveals the premetazoan origin of opposite gating polarity in animal-type voltage-gated ion channels. Genomics, 2012, 99, 241-245.	1.3	18
30	NAADP-binding proteins find their identity. Trends in Biochemical Sciences, 2022, 47, 235-249.	3.7	15
31	Shifting osteogenesis in vascular calcification. JCI Insight, 2021, 6, .	2.3	12
32	A new $tr(i)p$ to sense pain: TRPA1 channel as a target for novel analgesics. Expert Review of Neurotherapeutics, 2008, 8, 1675-1681.	1.4	11
33	New therapeutic possibilities for vein graft disease in the post-edifoligide era. Future Cardiology, 2006, 2, 493-501.	0.5	10
34	Subunit stoichiometry and channel pore structure of ion channels: all for one, or one for one?. Journal of Physiology, 2008, 586, 925-926.	1.3	10
35	Impact Of Ethnic Background On Clinical Characteristics And Cardiovascular Risk Factors Among Patients With Primary Hyperparathyroidism. Endocrine Practice, 2016, 22, 323-327.	1.1	10
36	Iodine Deficiency–Induced Goiter in Central New Jersey: A Case Series. AACE Clinical Case Reports, 2015, 1, e40-e44.	0.4	6

3

#	Article	IF	CITATIONS
37	Intact parathyroid hormone levels and primary hyperparathyroidism. Endocrine Research, 2017, 42, 1-5.	0.6	6
38	RESISTIN AGGRAVATES ATHEROSCLEROSIS IN APOE-/- MICE AND IS ELEVATED IN HUMAN ATHEROSCLEROTIC LESIONS. Journal of the American College of Cardiology, 2019, 73, 148.	1.2	6
39	Topological Studies of the Rat Brain K ⁺ â€Dependent Na ⁺ /Ca ²⁺ Exchanger NCKX2. Annals of the New York Academy of Sciences, 2002, 976, 90-93.	1.8	4
40	Transient Primary Hyperparathyroidism: A Case Report. AACE Clinical Case Reports, 2016, 2, e182-e185.	0.4	4
41	Pronethalol Reduces Sox2 (SRY [Sex-Determining Region Y]-Box 2) to Ameliorate Vascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 931-933.	1.1	4
42	Pronethalol decreases RBPJκ to reduce Sox2 in cerebral arteriovenous malformation. Vascular Medicine, 2020, 25, 569-571.	0.8	2
43	Ascending Aortic Pseudoaneurysm: A Rare Complication of Transcatheter Aortic Valve Replacement and Thoracic Surgery. Circulation: Cardiovascular Imaging, 2022, 15, .	1.3	2
44	Phosphatidylinositol-3-Kinase C2B and TRIM27 Function to Positively and Negatively Regulate IGE Receptor Activation of Mast Cells. Biophysical Journal, 2013, 104, 474a.	0.2	0
45	Cardiac sympathetic innervation and arrhythmogenesis. Journal of Physiology, 2019, 597, 4445-4446.	1.3	0
46	Molecular Mechanisms for Reciprocal Regulation of the PDGF Receptor and G Proteinâ€coupled Receptor Kinaseâ€5. FASEB Journal, 2008, 22, 1044.8.	0.2	0