
David A Brain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1884170/publications.pdf Version: 2024-02-01

ΠΑΝΙΟ Δ ΒΡΑΙΝ

#	Article	IF	CITATIONS
1	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	8.1	563
2	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
3	Martian magnetic morphology: Contributions from the solar wind and crust. Journal of Geophysical Research, 2003, 108, .	3.3	174
4	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
5	Electron pitch angle distributions as indicators of magnetic field topology near Mars. Journal of Geophysical Research, 2007, 112, .	3.3	153
6	Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 2015, 42, 8942-8950.	4.0	143
7	On the origin of aurorae on Mars. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	139
8	Bow Shock and Upstream Phenomena at Mars. Space Science Reviews, 2004, 111, 115-181.	8.1	129
9	Variability of the altitude of the Martian sheath. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	121
10	The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 2015, 42, 9142-9148.	4.0	115
11	Venus-like interaction of the solar wind with Mars. Geophysical Research Letters, 1999, 26, 2685-2688.	4.0	114
12	Plasma Acceleration Above Martian Magnetic Anomalies. Science, 2006, 311, 980-983.	12.6	111
13	A comparison of global models for the solar wind interaction with Mars. Icarus, 2010, 206, 139-151.	2.5	108
14	Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. Journal of Geophysical Research, 2002, 107, SMP 9-1.	3.3	107
15	Martian lowâ€altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1831-1852.	2.4	107
16	Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planetary and Space Science, 2008, 56, 873-880.	1.7	102
17	First results of the <scp>MAVEN</scp> magnetic field investigation. Geophysical Research Letters, 2015, 42, 8819-8827.	4.0	102
18	Initial results from the MAVEN mission to Mars. Geophysical Research Letters, 2015, 42, 8791-8802.	4.0	101

#	Article	IF	CITATIONS
19	Atmospheric loss since the onset of the Martian geologic record: Combined role of impact erosion and sputtering. Journal of Geophysical Research, 1998, 103, 22689-22694.	3.3	99
20	Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN. Space Science Reviews, 2015, 195, 357-422.	8.1	99
21	Discovery of diffuse aurora on Mars. Science, 2015, 350, aad0313.	12.6	98
22	Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophysical Research Letters, 2010, 37, .	4.0	97
23	Evidence for collisionless magnetic reconnection at Mars. Geophysical Research Letters, 2008, 35, .	4.0	94
24	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
25	Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization. Journal of Geophysical Research, 2009, 114, .	3.3	88
26	Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. Journal of Geophysical Research, 2004, 109, .	3.3	85
27	The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus, 2006, 182, 464-473.	2.5	82
28	Extreme lunar surface charging during solar energetic particle events. Geophysical Research Letters, 2007, 34, .	4.0	80
29	Observations and Impacts of the 10 September 2017 Solar Events at Mars: An Overview and Synthesis of the Initial Results. Geophysical Research Letters, 2018, 45, 8871-8885.	4.0	77
30	Ion escape from Mars as a function of solar wind conditions: A statistical study. Icarus, 2010, 206, 40-49.	2.5	72
31	Role of plasma waves in Mars' atmospheric loss. Geophysical Research Letters, 2006, 33, .	4.0	71
32	Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERAâ \in 3 and MARSIS measurements. Journal of Geophysical Research, 2008, 113, .	3.3	70
33	Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express. Annales Geophysicae, 2009, 27, 3537-3550.	1.6	70
34	Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions. Journal of Geophysical Research: Space Physics, 2013, 118, 3546-3556.	2.4	68
35	Evidence of electron impact ionization in the magnetic pileup boundary of Mars. Geophysical Research Letters, 2000, 27, 45-48.	4.0	67
36	Mars Global Surveyor Observations of Solar Wind Magnetic Field Draping Around Mars. Space Science Reviews, 2004, 111, 203-221.	8.1	67

#	Article	IF	CITATIONS
37	In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters. Journal of Geophysical Research, 2009, 114, .	3.3	66
38	Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4009-4022.	2.4	66
39	The Twisted Configuration of the Martian Magnetotail: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4559-4568.	4.0	66
40	Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind: A mini-magnetosphere?. Planetary and Space Science, 2008, 56, 941-946.	1.7	65
41	Threeâ€dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons. Journal of Geophysical Research, 2011, 116, .	3.3	65
42	Flows, Fields, and Forces in the Marsâ€Solar Wind Interaction. Journal of Geophysical Research: Space Physics, 2017, 122, 11,320.	2.4	64
43	Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A timeâ€dependent MHD study. Journal of Geophysical Research: Space Physics, 2015, 120, 10,926.	2.4	61
44	Mars Global Surveyor observations of the Halloween 2003 solar superstorm's encounter with Mars. Journal of Geophysical Research, 2005, 110, .	3.3	60
45	Mars Global Surveyor Measurements of the Martian Solar Wind Interaction. Space Science Reviews, 2007, 126, 77-112.	8.1	60
46	The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 4117-4137.	2.4	60
47	Magnetic reconnection in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8838-8845.	4.0	59
48	Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express. Journal of Geophysical Research, 2006, 111, .	3.3	58
49	A Technique to Infer Magnetic Topology at Mars and Its Application to the Terminator Region. Journal of Geophysical Research: Space Physics, 2019, 124, 1823-1842.	2.4	58
50	Current sheets at low altitudes in the Martian magnetotail. Geophysical Research Letters, 2006, 33, .	4.0	56
51	Numerical interpretation of high-altitude photoelectron observations. Icarus, 2006, 182, 383-395.	2.5	56
52	The global current systems of the Martian induced magnetosphere. Nature Astronomy, 2020, 4, 979-985.	10.1	55
53	Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences. Icarus, 2010, 206, 112-119.	2.5	54
54	Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters, 2015, 42, 9103-9112.	4.0	54

#	Article	IF	CITATIONS
55	Marsâ€solar wind interaction: LatHyS, an improved parallel 3â€D multispecies hybrid model. Journal of Geophysical Research: Space Physics, 2016, 121, 6378-6399.	2.4	54
56	Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 2015, 42, 8828-8837.	4.0	52
57	Characterization of Lowâ€Altitude Nightside Martian Magnetic Topology Using Electron Pitch Angle Distributions. Journal of Geophysical Research: Space Physics, 2017, 122, 9777-9789.	2.4	52
58	Whistler waves observed near lunar crustal magnetic sources. Geophysical Research Letters, 2006, 33,	4.0	51
59	Modeling Martian Atmospheric Losses over Time: Implications for Exoplanetary Climate Evolution and Habitability. Astrophysical Journal Letters, 2018, 859, L14.	8.3	51
60	Solar control of radar wave absorption by the Martian ionosphere. Geophysical Research Letters, 2006, 33, .	4.0	50
61	Areas of enhanced ionization in the deep nightside ionosphere of Mars. Journal of Geophysical Research, 2011, 116, .	3.3	50
62	Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 11,113.	2.4	50
63	On the relation between plasma escape and the Martian crustal magnetic field. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	49
64	Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planetary and Space Science, 2008, 56, 802-806.	1.7	48
65	Model calculations of electron precipitation induced ionization patches on the nightside of Mars. Geophysical Research Letters, 2007, 34, .	4.0	47
66	ARTEMIS Science Objectives. Space Science Reviews, 2011, 165, 59-91.	8.1	47
67	Response of Mars O ⁺ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN dataâ€based models. Geophysical Research Letters, 2015, 42, 9095-9102.	4.0	47
68	Dayside induced magnetic field in the ionosphere of Mars. Icarus, 2010, 206, 104-111.	2.5	46
69	Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections. Journal of Geophysical Research, 2008, 113, .	3.3	44
70	Atmospheric escape from unmagnetized bodies. Journal of Geophysical Research E: Planets, 2016, 121, 2364-2385.	3.6	44
71	Statistical Study of Relations Between the Induced Magnetosphere, Ion Composition, and Pressure Balance Boundaries Around Mars Based On MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 9723-9737.	2.4	44
72	The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 11,285.	2.4	44

#	Article	IF	CITATIONS
73	Magnetic Reconnection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4550-4558.	4.0	44
74	Global Aurora on Mars During the September 2017 Space Weather Event. Geophysical Research Letters, 2018, 45, 7391-7398.	4.0	44
75	A statistical study of flux ropes in the Martian magnetosphere. Planetary and Space Science, 2011, 59, 1498-1505.	1.7	43
76	On the occurrence of magnetic enhancements caused by solar wind interaction with lunar crustal fields. Geophysical Research Letters, 2006, 33, .	4.0	42
77	Planetary magnetic field control of ion escape from weakly magnetized planets. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2108-2120.	4.4	41
78	Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 5114-5131.	2.4	40
79	Martian magnetic storms. Journal of Geophysical Research: Space Physics, 2017, 122, 6185-6209.	2.4	40
80	The Threeâ€Ðimensional Bow Shock of Mars as Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2018, 123, 4542-4555.	2.4	40
81	Magnetosonic Mach number effect of the position of the bow shock at Mars in comparison to Venus. Journal of Geophysical Research, 2010, 115, .	3.3	39
82	The Morphology of the Solar Wind Magnetic Field Draping on the Dayside of Mars and Its Variability. Geophysical Research Letters, 2018, 45, 3356-3365.	4.0	39
83	Investigation of Martian Magnetic Topology Response to 2017 September ICME. Geophysical Research Letters, 2018, 45, 7337-7346.	4.0	39
84	External fields on the nightside of Mars at Mars Global Surveyor mapping altitudes. Geophysical Research Letters, 2005, 32, .	4.0	38
85	Solar wind interaction with lunar crustal magnetic anomalies. Advances in Space Research, 2008, 41, 1319-1324.	2.6	38
86	Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux. Journal of Geophysical Research, 2010, 115, .	3.3	38
87	MAVEN observations of partially developed Kelvinâ€Helmholtz vortices at Mars. Geophysical Research Letters, 2016, 43, 4763-4773.	4.0	38
88	MAVEN observations of tail current sheet flapping at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 4308-4324.	2.4	37
89	Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN. Geophysical Research Letters, 2016, 43, 1426-1434.	4.0	36
90	Absorption of MARSIS radar signals: Solar energetic particles and the daytime ionosphere. Geophysical Research Letters, 2007, 34, .	4.0	35

#	Article	IF	CITATIONS
91	Implications of MAVEN Mars nearâ€wake measurements and models. Geophysical Research Letters, 2015, 42, 9087-9094.	4.0	35
92	Ionizing Electrons on the Martian Nightside: Structure and Variability. Journal of Geophysical Research: Space Physics, 2018, 123, 4349-4363.	2.4	35
93	The Influence of Solar Wind Pressure on Martian Crustal Magnetic Field Topology. Geophysical Research Letters, 2019, 46, 2347-2354.	4.0	35
94	Marsward and tailward ions in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8925-8932.	4.0	34
95	Evidence for smallâ€scale collisionless shocks at the Moon from ARTEMIS. Geophysical Research Letters, 2014, 41, 7436-7443.	4.0	33
96	Upper Neutral Atmosphere and Ionosphere. , 2017, , 433-463.		33
97	Observational evidence of alphaâ€particle capture at Mars. Geophysical Research Letters, 2011, 38, .	4.0	32
98	Low-frequency plasma oscillations at Mars during the October 2003 solar storm. Journal of Geophysical Research, 2005, 110, .	3.3	31
99	Distribution and variability of accelerated electrons at Mars. Advances in Space Research, 2008, 41, 1347-1352.	2.6	30
100	Characterization of turbulence in the Mars plasma environment with MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 656-674.	2.4	30
101	Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 7142-7152.	2.4	30
102	Temporal variability of waves at the proton cyclotron frequency upstream from Mars: Implications for Mars distant hydrogen exosphere. Geophysical Research Letters, 2013, 40, 3809-3813.	4.0	29
103	Statistical Study of Heavy Ion Outflows From Mars Observed in the Martianâ€Induced Magnetotail by MAVEN. Journal of Geophysical Research: Space Physics, 2019, 124, 5482-5497.	2.4	29
104	The Emirates Mars Mission. Space Science Reviews, 2022, 218, 4.	8.1	29
105	Auroral Plasma Acceleration Above Martian Magnetic Anomalies. Space Science Reviews, 2007, 126, 333-354.	8.1	28
106	A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations. Journal of Geophysical Research, 2012, 117, .	3.3	28
107	The Martian Photoelectron Boundary as Seen by MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 10,472.	2.4	28
108	Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations. Journal of Geophysical Research: Space Physics, 2017, 122, 857-873.	2.4	28

#	Article	IF	CITATIONS
109	On the origins of magnetic flux ropes in nearâ€Mars magnetotail current sheets. Geophysical Research Letters, 2017, 44, 7653-7662.	4.0	28
110	Interplanetary coronal mass ejection influence on high energy pick-up ions at Venus. Planetary and Space Science, 2010, 58, 1784-1791.	1.7	27
111	MAVEN observations of electronâ€induced whistler mode waves in the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 9717-9731.	2.4	27
112	Day-side ionospheric conductivities at Mars. Planetary and Space Science, 2010, 58, 1139-1151.	1.7	26
113	Investigation of Mars' ionospheric response to solar energetic particle events. Journal of Geophysical Research, 2012, 117, .	3.3	26
114	A chain of magnetic flux ropes in the magnetotail of Mars. Geophysical Research Letters, 2012, 39, .	4.0	26
115	Highâ€Altitude Closed Magnetic Loops at Mars Observed by MAVEN. Geophysical Research Letters, 2017, 44, 11,229.	4.0	26
116	Invertedâ€V Electron Acceleration Events Concurring With Localized Auroral Observations at Mars by MAVEN. Geophysical Research Letters, 2020, 47, e2020GL087414.	4.0	26
117	Timeâ€dispersed ion signatures observed in the Martian magnetosphere by MAVEN. Geophysical Research Letters, 2015, 42, 8910-8916.	4.0	25
118	The Influence of Interplanetary Magnetic Field Direction on Martian Crustal Magnetic Field Topology. Geophysical Research Letters, 2020, 47, e2020GL087757.	4.0	25
119	Estimates of Ionospheric Transport and Ion Loss at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 10,626.	2.4	24
120	Structure and Variability of the Martian Ion Composition Boundary Layer. Journal of Geophysical Research: Space Physics, 2018, 123, 8439-8458.	2.4	24
121	On wind-driven electrojets at magnetic cusps in the nightside ionosphere of Mars. Earth, Planets and Space, 2012, 64, 93-103.	2.5	23
122	Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999–2006. Space Weather, 2012, 10, .	3.7	23
123	MARSIS Observations of the Martian Nightside Ionosphere During the September 2017 Solar Event. Geophysical Research Letters, 2018, 45, 7960-7967.	4.0	23
124	Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes. Space Science Reviews, 2021, 217, .	8.1	23
125	Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Gradâ€Shafranov reconstruction. Journal of Geophysical Research: Space Physics, 2014, 119, 7947-7962.	2.4	22
126	Dynamics of planetary ions in the induced magnetospheres of Venus and Mars. Planetary and Space Science, 2016, 127, 1-14.	1.7	22

#	Article	IF	CITATIONS
127	Cold Dense Ion Outflow Observed in the Martianâ€Induced Magnetotail by MAVEN. Geophysical Research Letters, 2018, 45, 5283-5289.	4.0	22
128	Magnetic field draping around Mars: Mars Global Surveyor results. Advances in Space Research, 2001, 27, 1831-1836.	2.6	21
129	Dual-spacecraft observation of large-scale magnetic flux ropes in the Martian ionosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
130	Large-amplitude compressive "sawtooth―magnetic field oscillations in the Martian magnetosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
131	MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. Journal of Geophysical Research: Space Physics, 2017, 122, 828-842.	2.4	21
132	Oxygen lon Energization at Mars: Comparison of MAVEN and Mars Express Observations to Global Hybrid Simulation. Journal of Geophysical Research: Space Physics, 2018, 123, 1678-1689.	2.4	21
133	Effects of the Crustal Magnetic Fields and Changes in the IMF Orientation on the Magnetosphere of Mars: MAVEN Observations and LatHyS Results. Journal of Geophysical Research: Space Physics, 2018, 123, 5315-5333.	2.4	21
134	An Artificial Neural Network for Inferring Solar Wind Proxies at Mars. Geophysical Research Letters, 2018, 45, 10,855.	4.0	21
135	Characterizing Mars's Magnetotail Topology With Respect to the Upstream Interplanetary Magnetic Fields. Journal of Geophysical Research: Space Physics, 2020, 125, no.	2.4	21
136	Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment. Annales Geophysicae, 2009, 27, 4533-4545.	1.6	21
137	Solar energetic particles in nearâ€Mars space. Journal of Geophysical Research, 2007, 112, .	3.3	20
138	Global distribution, structure, and solar wind control of low altitude current sheets at Mars. Icarus, 2010, 206, 64-73.	2.5	20
139	Evaluating predictions of ICME arrival at Earth and Mars. Space Weather, 2011, 9, .	3.7	20
140	The spatial structure of Martian magnetic flux ropes recovered by the Gradâ€6hafranov reconstruction technique. Journal of Geophysical Research: Space Physics, 2014, 119, 1262-1271.	2.4	20
141	MARSIS remote sounding of localized density structures in the dayside Martian ionosphere: A study of controlling parameters. Journal of Geophysical Research: Space Physics, 2015, 120, 8125-8145.	2.4	20
142	Discrete Aurora on Mars: Insights Into Their Distribution and Activity From MAVEN/IUVS Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029428.	2.4	20
143	Probing upper thermospheric neutral densities at Mars using electron reflectometry. Geophysical Research Letters, 2005, 32, .	4.0	19
144	Continuous monitoring of nightside upper thermospheric mass densities in the martian southern hemisphere over 4 martian years using electron reflectometry. Icarus, 2008, 194, 562-574.	2.5	19

#	Article	IF	CITATIONS
145	Radar absorption due to a corotating interaction region encounter with Mars detected by MARSIS. Icarus, 2010, 206, 95-103.	2.5	19
146	MAVEN observation of an obliquely propagating lowâ€frequency wave upstream of Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 2374-2389.	2.4	19
147	MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field. Journal of Geophysical Research: Space Physics, 2017, 122, 1083-1101.	2.4	19
148	Responses of the Martian Magnetosphere to an Interplanetary Coronal Mass Ejection: MAVEN Observations and LatHyS Results. Geophysical Research Letters, 2018, 45, 7891-7900.	4.0	19
149	MAVEN observations of energyâ€time dispersed electron signatures in Martian crustal magnetic fields. Geophysical Research Letters, 2016, 43, 939-944.	4.0	18
150	Solar Wind Interaction and Atmospheric Escape. , 2017, , 464-496.		18
151	Modeling photoelectron transport in the Martian ionosphere at Olympus Mons and Syrtis Major: MGS observations. Journal of Geophysical Research, 2010, 115, .	3.3	17
152	Evidence for superthermal secondary electrons produced by SEP ionization in the Martian atmosphere. Journal of Geophysical Research, 2012, 117, .	3.3	17
153	Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 2015, 42, 8933-8941.	4.0	17
154	Properties of Plasma Waves Observed Upstream From Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028221.	2.4	17
155	Influence of IMF draping direction and crustal magnetic field location on Martian ion beams. Planetary and Space Science, 2008, 56, 861-867.	1.7	16
156	Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements. Planetary and Space Science, 2015, 117, 15-23.	1.7	16
157	Evidence for Crustal Magnetic Field Control of Ions Precipitating Into the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 8572-8586.	2.4	16
158	Magnetic Field in the Martian Magnetosheath and the Application as an IMF Clock Angle Proxy. Journal of Geophysical Research: Space Physics, 2019, 124, 4295-4313.	2.4	16
159	Magnetospheric Studies: A Requirement for Addressing Interdisciplinary Mysteries in the Ice Giant Systems. Space Science Reviews, 2020, 216, 1.	8.1	16
160	Search for Phobos and Deimos gas/dust tori using in situ observations from Mars Global Surveyor MAG/ER. Icarus, 2010, 206, 189-198.	2.5	15
161	Observation of conical electron distributions over Martian crustal magnetic fields. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	15
162	Ion escape rates from Mars: Results from hybrid simulations compared to MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 8391-8408.	2.4	15

#	Article	IF	CITATIONS
163	Comparison of Global Martian Plasma Models in the Context of MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3714-3726.	2.4	15
164	Variations in Nightside Magnetic Field Topology at Mars. Geophysical Research Letters, 2020, 47, e2020GL088921.	4.0	15
165	MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophysical Research Letters, 2016, 43, 4816-4824.	4.0	14
166	Fieldâ€Aligned Electrostatic Potentials Above the Martian Exobase From MGS Electron Reflectometry: Structure and Variability. Journal of Geophysical Research E: Planets, 2018, 123, 67-92.	3.6	14
167	Magnetic Reconnection in the Ionosphere of Mars: The Role of Collisions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028036.	2.4	14
168	Martian Crustal Field Influence on O ⁺ and O ₂ ⁺ Escape as Measured by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029234.	2.4	14
169	A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars. Geophysical Research Letters, 2022, 49, .	4.0	14
170	O ⁺ ion beams reflected below the Martian bow shock: MAVEN observations. Journal of Geophysical Research: Space Physics, 2016, 121, 3093-3107.	2.4	13
171	MAVEN Survey of Magnetic Flux Rope Properties in the Martian Ionosphere: Comparison With Three Types of Formation Mechanisms. Geophysical Research Letters, 2021, 48, e2021GL093296.	4.0	13
172	Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	12
173	Stellar influence on heavy ion escape from unmagnetized exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1283-1291.	4.4	12
174	Bow Shock and Upstream Phenomena at Mars. Space Sciences Series of ISSI, 2004, , 115-181.	0.0	12
175	Parametric analysis of modeled ion escape from Mars. Icarus, 2011, 212, 131-137.	2.5	11
176	Aurora in Martian Mini Magnetospheres. Geophysical Monograph Series, 0, , 123-132.	0.1	11
177	Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars. Journal of Geophysical Research: Space Physics, 2013, 118, 3700-3711.	2.4	11
178	Correlations between variations in solar EUV and soft Xâ€ray irradiance and photoelectron energy spectra observed on Mars and Earth. Journal of Geophysical Research: Space Physics, 2013, 118, 7338-7347.	2.4	11
179	Statistical analysis of the reflection of incident O ⁺ pickup ions at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4089-4101.	2.4	11
180	The Mars system revealed by the Martian Moons eXploration mission. Earth, Planets and Space, 2022, 74, .	2.5	11

#	Article	IF	CITATIONS
181	Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSAâ€ENLIL + Cone model. Journal of Geophysical Research: Space Physics, 2016, 121, 6207-6222.	2.4	10
182	Oneâ€Hertz Waves at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3460-3476.	2.4	10
183	The LatHyS database for planetary plasma environment investigations: Overview and a case study of data/model comparisons. Planetary and Space Science, 2018, 150, 13-21.	1.7	10
184	A Monte Carlo model of crustal field influences on solar energetic particle precipitation into the Martian atmosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 5653-5669.	2.4	10
185	Sending hope to Mars. Nature Astronomy, 2020, 4, 722-722.	10.1	9
186	Planetary Magnetic Fields and Climate Evolution. , 2013, , .		9
187	Global Ambipolar Potentials and Electric Fields at Mars Inferred From MAVEN Observations. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	9
188	A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere. Geophysical Research Letters, 2015, 42, 8810-8818.	4.0	8
189	Low Electron Temperatures Observed at Mars by MAVEN on Dayside Crustal Magnetic Field Lines. Journal of Geophysical Research: Space Physics, 2019, 124, 7629-7637.	2.4	8
190	Locally Generated ULF Waves in the Martian Magnetosphere: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 8707-8726.	2.4	8
191	Atmospheric Escape and Climate Evolution of Terrestrial Planets. , 2013, , .		8
192	Seasonal and Dustâ€Related Variations in the Dayside Thermospheric and Ionospheric Compositions of Mars Observed by MAVEN/NGIMS. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006926.	3.6	8
193	Empirically Determined Auroral Electron Events at Mars—MAVEN Observations. Geophysical Research Letters, 2022, 49, .	4.0	8
194	Asymmetric penetration of shocked solar wind down to 400 km altitudes at Mars. Journal of Geophysical Research: Space Physics, 2015, 120, 6874-6883.	2.4	7
195	Solar control of the Martian magnetic topology: Implications from model-data comparisons. Planetary and Space Science, 2016, 128, 1-13.	1.7	7
196	Particleâ€Inâ€Cell Modeling of Martian Magnetic Cusps and Their Role in Enhancing Nightside Ionospheric Ion Escape. Geophysical Research Letters, 2021, 48, .	4.0	7
197	A Proxy for the Upstream IMF Clock Angle Using MAVEN Magnetic Field Data. Journal of Geophysical Research: Space Physics, 2018, 123, 9612-9618.	2.4	6
198	MAVEN Case Studies of Plasma Dynamics in Lowâ€Altitude Crustal Magnetic Field at Mars 1: Dayside Ion Spikes Associated With Radial Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 1239-1261.	2.4	6

#	Article	IF	CITATIONS
199	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	3.6	6
200	The bow shocks and upstream waves of Venus and Mars. Advances in Space Research, 2004, 33, 1913-1919.	2.6	5
201	Mars Global Surveyor Observations of Solar Wind Magnetic Field Draping Around Mars. Space Sciences Series of ISSI, 2004, , 203-221.	0.0	5
202	Martian magnetism with orbiting sub-millimeter sensor: simulated retrieval system. Geoscientific Instrumentation, Methods and Data Systems, 2017, 6, 27-37.	1.6	4
203	Test Particle Model Predictions of SEP Electron Transport and Precipitation at Mars. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029132.	2.4	4
204	ARTEMIS Science Objectives. , 2011, , 27-59.		4
205	Formation Mechanisms of the Molecular Ion Polar Plume and Its Contribution to Ion Escape From Mars. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
206	Mars Global Surveyor Measurements of the Martian Solar Wind Interaction. , 2007, , 77-112.		3
207	A Comparative Study of Magnetic Flux Ropes in the Nightside Induced Magnetosphere of Mars and Venus. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
208	Climates of terrestrial planets. , 0, , 147-174.		2
209	Statistical Similarities Between WSAâ€ENLIL+Cone Model and MAVEN in Situ Observations From November 2014 to March 2016. Space Weather, 2018, 16, 157-171.	3.7	2
210	Energetic Neutral Atoms near Mars: Predicted Distributions Based on MAVEN Measurements. Astrophysical Journal, 2022, 927, 11.	4.5	2
211	The Response of the Martian Atmosphere to Space Weather. Proceedings of the International Astronomical Union, 2017, 13, 114-120.	0.0	1
212	Auroral Plasma Acceleration above Martian Magnetic Anomalies. , 2007, , 333-354.		1
213	Mars: A Richly Complicated Obstacle to the Solar Wind: Chapman Conference on the Solar Wind Interaction With Mars; San Diego, California, 22-25 January 2008. Eos, 2008, 89, 212-212.	0.1	0
214	Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet. Proceedings of the International Astronomical Union, 2016, 12, 211-217.	0.0	0