
Kenneth S Zaret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1884148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maintaining Transcriptional Specificity Through Mitosis. Annual Review of Genomics and Human Genetics, 2022, 23, 53-71.	2.5	16
2	A LAMP sequencing approach for high-throughput co-detection of SARS-CoV-2 and influenza virus in human saliva. ELife, 2022, 11, .	2.8	6
3	ETV2 functions as a pioneer factor to regulate and reprogram the endothelial lineage. Nature Cell Biology, 2022, 24, 672-684.	4.6	25
4	Structures and consequences of pioneer factor binding to nucleosomes. Current Opinion in Structural Biology, 2022, 75, 102425.	2.6	12
5	THBS2/CA19-9 Detecting Pancreatic Ductal Adenocarcinoma at Diagnosis Underperforms in Prediagnostic Detection: Implications for Biomarker Advancement. Cancer Prevention Research, 2021, 14, 223-232.	0.7	13
6	FoxA-dependent demethylation of DNA initiates epigenetic memory of cellular identity. Developmental Cell, 2021, 56, 602-612.e4.	3.1	30
7	Longitudinal Analysis of Human Pancreatic Adenocarcinoma Development Reveals Transient Gene Expression Signatures. Molecular Cancer Research, 2021, 19, 1854-1867.	1.5	1
8	Diverse heterochromatin-associated proteins repress distinct classes of genes and repetitive elements. Nature Cell Biology, 2021, 23, 905-914.	4.6	35
9	EU-RNA-seq for inÂvivo labeling and high throughput sequencing of nascent transcripts. STAR Protocols, 2021, 2, 100651.	0.5	9
10	THSB2 as a prognostic biomarker for patients diagnosed with metastatic pancreatic ductal adenocarcinoma. Oncotarget, 2021, 12, 2266-2272.	0.8	1
11	Growth of pancreatic cancers with hemizygous chromosomal 17p loss of <i>MYBBP1A</i> can be preferentially targeted by PARP inhibitors. Science Advances, 2020, 6, .	4.7	3
12	Embryonic liver developmental trajectory revealed by single-cell RNA sequencing in the Foxa2eGFP mouse. Communications Biology, 2020, 3, 642.	2.0	24
13	John D. Gearhart (1943–2020). Science, 2020, 369, 628-628.	6.0	0
14	Pioneer Transcription Factors Initiating Gene Network Changes. Annual Review of Genetics, 2020, 54, 367-385.	3.2	247
15	Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin. Molecular Cell, 2020, 79, 677-688.e6.	4.5	87
16	Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nature Genetics, 2020, 52, 418-427.	9.4	57
17	Two-parameter single-molecule analysis for measurement of chromatin mobility. STAR Protocols, 2020, 1, 100223.	0.5	9
18	Structural Features of Transcription Factors Associating with Nucleosome Binding. Molecular Cell, 2019, 75, 921-932.e6.	4.5	158

#	Article	IF	CITATIONS
19	Epigenetic Mechanisms in Liver and Pancreas Generation and Regeneration. , 2019, , 231-257.		2
20	Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Current Opinion in Genetics and Development, 2019, 55, 1-10.	1.5	177
21	Polycomb Repressive Complex 2 Proteins EZH1 and EZH2 Regulate Timing of Postnatal Hepatocyte Maturation and Fibrosis by Repressing Genes With Euchromatic Promoters inÂMice. Gastroenterology, 2019, 156, 1834-1848.	0.6	21
22	Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation. Molecular Cell, 2019, 74, 185-195.e4.	4.5	95
23	H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science, 2019, 363, 294-297.	6.0	161
24	A changing paradigm of transcriptional memory propagation through mitosis. Nature Reviews Molecular Cell Biology, 2019, 20, 55-64.	16.1	97
25	Generation of Induced Pluripotent Stem Cell-Like Lines from Human Pancreatic Ductal Adenocarcinoma. Methods in Molecular Biology, 2019, 1882, 33-53.	0.4	4
26	Pioneering the chromatin landscape. Nature Genetics, 2018, 50, 167-169.	9.4	28
27	Comparison of reprogramming factor targets reveals both species-specific and conserved mechanisms in early iPSC reprogramming. BMC Genomics, 2018, 19, 956.	1.2	15
28	Microsatellite enhancers can be targeted to impair tumorigenesis. Genes and Development, 2018, 32, 991-992.	2.7	2
29	Managing cell and human identity. Science, 2017, 356, 139-140.	6.0	3
30	Cell fate conversion: a chromatin remodeling checkpoint revealed. Cell Research, 2017, 27, 598-599.	5.7	2
31	Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. Science Translational Medicine, 2017, 9, .	5.8	193
32	Mitotic transcription and waves of gene reactivation during mitotic exit. Science, 2017, 358, 119-122.	6.0	201
33	Genomic and Proteomic Resolution of Heterochromatin and Its Restriction of Alternate Fate Genes. Molecular Cell, 2017, 68, 1023-1037.e15.	4.5	159
34	Low-Level, Global Transcription during Mitosis and Dynamic Gene Reactivation during Mitotic Exit. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 197-205.	2.0	22
35	The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation. Molecular Cell, 2016, 62, 79-91.	4.5	315
36	From Endoderm to Liver Bud. Current Topics in Developmental Biology, 2016, 117, 647-669.	1.0	32

#	Article	IF	CITATIONS
37	BET Inhibitors Suppress ALDH Activity by Targeting <i>ALDH1A1</i> Super-Enhancer in Ovarian Cancer. Cancer Research, 2016, 76, 6320-6330.	0.4	115
38	Cell fate control by pioneer transcription factors. Development (Cambridge), 2016, 143, 1833-1837.	1.2	249
39	Chromatin Scanning by Dynamic Binding of Pioneer Factors. Molecular Cell, 2016, 62, 665-667.	4.5	55
40	Pioneer transcription factors, chromatin dynamics, and cell fate control. Current Opinion in Genetics and Development, 2016, 37, 76-81.	1.5	312
41	H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes. Trends in Genetics, 2016, 32, 29-41.	2.9	380
42	The Chromatin Modifier MSK1/2 Suppresses Endocrine Cell Fates during Mouse Pancreatic Development. PLoS ONE, 2016, 11, e0166703.	1.1	7
43	Reprogramming of human cancer cells to pluripotency for models of cancer progression. EMBO Journal, 2015, 34, 739-747.	3.5	52
44	Maintaining liver mass. Nature, 2015, 524, 165-166.	13.7	7
45	Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming. Cell, 2015, 161, 555-568.	13.5	643
46	Grg3/TLE3 and Grg1/TLE1 Induce Monohormonal Pancreatic β-Cells While Repressing α-Cell Functions. Diabetes, 2014, 63, 1804-1816.	0.3	22
47	Pioneer transcription factors in cell reprogramming. Genes and Development, 2014, 28, 2679-2692.	2.7	541
48	Dynamics of genomic <scp>H</scp> 3 <scp>K</scp> 27me3 domains and role of <scp>EZH</scp> 2 during pancreatic endocrine specification. EMBO Journal, 2014, 33, 2157-2170.	3.5	70
49	At the Revolution with Fred Sherman. Molecular and Cellular Biology, 2014, 34, 922-925.	1.1	0
50	Cell and tissue engineering for liver disease. Science Translational Medicine, 2014, 6, 245sr2.	5.8	247
51	Genome Reactivation after the Silence in Mitosis: Recapitulating Mechanisms of Development?. Developmental Cell, 2014, 29, 132-134.	3.1	41
52	Abstract B02: Modeling of early to invasive stages of pancreatic cancer progression with an iPSC-like line from human pancreatic ductal adenocarcinoma. , 2014, , .		0
53	Understanding impediments to cellular conversion to pluripotency by assessing the earliest events in ectopic transcription factor binding to the genome. Cell Cycle, 2013, 12, 1487-1491.	1.3	14
54	An iPSC Line from Human Pancreatic Ductal Adenocarcinoma Undergoes Early to Invasive Stages of Pancreatic Cancer Progression. Cell Reports, 2013, 3, 2088-2099.	2.9	161

#	Article	IF	CITATIONS
55	Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes and Development, 2013, 27, 251-260.	2.7	191
56	The transcriptional co-repressor Grg3/Tle3 promotes pancreatic endocrine progenitor delamination and β-cell differentiation. Development (Cambridge), 2012, 139, 1447-1456.	1.2	24
57	Chromatin "pre-pattern―and epigenetic modulation in the cell fate choice of liver over pancreas in the endoderm. Nucleus, 2012, 3, 150-154.	0.6	14
58	Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice. DMM Disease Models and Mechanisms, 2012, 5, 956-66.	1.2	18
59	Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement with the Genome. Cell, 2012, 151, 994-1004.	13.5	789
60	Activating the genome during development and exit from mitosis. FASEB Journal, 2012, 26, 344.3.	0.2	0
61	Pioneer transcription factors: establishing competence for gene expression. Genes and Development, 2011, 25, 2227-2241.	2.7	1,388
62	Chromatin "Prepattern―and Histone Modifiers in a Fate Choice for Liver and Pancreas. Science, 2011, 332, 963-966.	6.0	186
63	Study of FoxA Pioneer Factor at Silent Genes Reveals Rfx-Repressed Enhancer at Cdx2 and a Potential Indicator of Esophageal Adenocarcinoma Development. PLoS Genetics, 2011, 7, e1002277.	1.5	60
64	Dynamic expression of <i>groucho</i> â€related genes <i>Grg1</i> and <i>Grg3</i> in foregut endoderm and antagonism of differentiation. Developmental Dynamics, 2010, 239, 980-986.	0.8	19
65	Extreme makeover of pancreatic α-cells. Nature, 2010, 464, 1132-1133.	13.7	12
66	Nuclear Mobility and Mitotic Chromosome Binding: Similarities between Pioneer Transcription Factor FoxA and Linker Histone H1. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 219-226.	2.0	29
67	Altered states: how gene expression is changed during differentiation. Current Opinion in Genetics and Development, 2010, 20, 467-469.	1.5	6
68	Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes and Development, 2009, 23, 2824-2838.	2.7	160
69	Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes and Development, 2009, 23, 804-809.	2.7	190
70	Generation of Monoclonal Antibodies Specific for Cell Surface Molecules Expressed on Early Mouse Endoderm. Stem Cells, 2009, 27, 2103-2113.	1.4	38
71	Using Small Molecules to Great Effect in Stem Cell Differentiation. Cell Stem Cell, 2009, 4, 373-374.	5.2	25
72	Dynamic Signaling Network for the Specification of Embryonic Pancreas and Liver Progenitors. Science, 2009, 324, 1707-1710.	6.0	219

#	Article	IF	CITATIONS
73	Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nature Reviews Genetics, 2008, 9, 329-340.	7.7	273
74	Generation and Regeneration of Cells of the Liver and Pancreas. Science, 2008, 322, 1490-1494.	6.0	530
75	The Forkhead Factor FoxE1 Binds to the Thyroperoxidase Promoter during Thyroid Cell Differentiation and Modifies Compacted Chromatin Structure. Molecular and Cellular Biology, 2007, 27, 7302-7314.	1.1	73
76	Specific Interactions of the Wing Domains of FOXA1 Transcription Factor with DNA. Journal of Molecular Biology, 2007, 366, 720-724.	2.0	65
77	Repression by Groucho/TLE/Grg Proteins: Genomic Site Recruitment Generates Compacted Chromatin In Vitro and Impairs Activator Binding In Vivo. Molecular Cell, 2007, 28, 291-303.	4.5	151
78	Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12377-12382.	3.3	109
79	Pancreatic \hat{I}^2 cells: Responding to the matrix. Cell Metabolism, 2006, 3, 148-150.	7.2	10
80	An FGF Response Pathway that Mediates Hepatic Gene Induction in Embryonic Endoderm Cells. Developmental Cell, 2006, 11, 339-348.	3.1	138
81	Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Developmental Biology, 2006, 290, 44-56.	0.9	248
82	An endothelial–mesenchymal relay pathway regulates early phases of pancreas development. Developmental Biology, 2006, 290, 189-199.	0.9	124
83	FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription. Experimental Cell Research, 2005, 304, 593-603.	1.2	36
84	Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Developmental Biology, 2005, 280, 87-99.	0.9	261
85	Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development (Cambridge), 2004, 131, 797-806.	1.2	235
86	Hepatocyte nuclear factor 4î± controls the development of a hepatic epithelium and liver morphogenesis. Nature Genetics, 2003, 34, 292-296.	9.4	530
87	Opening of Compacted Chromatin by Early Developmental Transcription Factors HNF3 (FoxA) and GATA-4. Molecular Cell, 2002, 9, 279-289.	4.5	1,035
88	Regulatory phases of early liver development: paradigms of organogenesis. Nature Reviews Genetics, 2002, 3, 499-512.	7.7	459
89	Liver Organogenesis Promoted by Endothelial Cells Prior to Vascular Function. Science, 2001, 294, 559-563.	6.0	803
90	Transcription Factor FoxA (HNF3) on a Nucleosome at an Enhancer Complex in Liver Chromatin. Journal of Biological Chemistry, 2001, 276, 44385-44389.	1.6	80

#	Article	IF	CITATIONS
91	Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes and Development, 2001, 15, 1998-2009.	2.7	573
92	Initiation of Mammalian Liver Development from Endoderm by Fibroblast Growth Factors. Science, 1999, 284, 1998-2003.	6.0	660
93	An Early Developmental Transcription Factor Complex that Is More Stable on Nucleosome Core Particles Than on Free DNA. Molecular Cell, 1999, 4, 961-969.	4.5	219
94	Expression of a Highly Unstable and Insoluble Transcription Factor inEscherichia coli:Purification and Characterization of thefork headHomolog Hnf3α. Protein Expression and Purification, 1995, 6, 821-825.	0.6	27
95	An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell, 1993, 75, 387-398.	13.5	344
96	Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell, 1984, 38, 29-38.	13.5	492
97	Liver Development: From Endoderm to Hepatocyte. , 0, , 3-13.		2