List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883760/publications.pdf Version: 2024-02-01

FRICH D LADVIS

#	Article	lF	CITATIONS
1	Oxytocin variation and brain regionâ€specific gene expression in a domesticated avian species. Genes, Brain and Behavior, 2022, 21, e12780.	1.1	7
2	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	124
3	The era of reference genomes in conservation genomics. Trends in Ecology and Evolution, 2022, 37, 197-202.	4.2	138
4	Darwinian genomics and diversity in the tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
5	Standards recommendations for the Earth BioGenome Project. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
6	Why sequence all eukaryotes?. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	51
7	A high-quality, long-read genome assembly of the endangered ring-tailed lemur (<i>Lemur catta</i>). CigaScience, 2022, 11, .	3.3	1
8	Merfin: improved variant filtering, assembly evaluation and polishing via k-mer validation. Nature Methods, 2022, 19, 696-704.	9.0	30
9	Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9. Scientific Reports, 2022, 12, 4369.	1.6	5
10	The kÄkÄpÅ•(Strigops habroptilus). Trends in Genetics, 2022, , .	2.9	0
11	Africa: sequence 100,000 species to safeguard biodiversity. Nature, 2022, 603, 388-392.	13.7	19
12	Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue. Nature Biotechnology, 2022, 40, 1082-1092.	9.4	52
13	Haplotype-resolved assembly of diploid genomes without parental data. Nature Biotechnology, 2022, 40, 1332-1335.	9.4	139
14	The complete sequence of a human genome. Science, 2022, 376, 44-53.	6.0	1,222
15	The Human Pangenome Project: a global resource to map genomic diversity. Nature, 2022, 604, 437-446.	13.7	192
16	Oxytocin and vasotocin receptor variation and the evolution of human prosociality. Comprehensive Psychoneuroendocrinology, 2022, 11, 100139.	0.7	6
17	Gfastats: conversion, evaluation and manipulation of genome sequences using assembly graphs. Bioinformatics, 2022, 38, 4214-4216.	1.8	14
18	Reference genome and demographic history of the most endangered marine mammal, the vaquita. Molecular Ecology Resources, 2021, 21, 1008-1020.	2.2	54

#	Article	IF	CITATIONS
19	Birdsong Learning and Culture: Analogies with Human Spoken Language. Annual Review of Linguistics, 2021, 7, 449-472.	1.2	22
20	A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals. GigaScience, 2021, 10, .	3.3	36
21	A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nature Communications, 2021, 12, 463.	5.8	109
22	At the beginning of speciation. Science, 2021, 371, 1312-1312.	6.0	1
23	Estrogen and sex-dependent loss of the vocal learning system in female zebra finches. Hormones and Behavior, 2021, 129, 104911.	1.0	11
24	Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature, 2021, 594, 227-233.	13.7	42
25	Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C. Nature Communications, 2021, 12, 1935.	5.8	64
26	Universal nomenclature for oxytocin–vasotocin ligand and receptor families. Nature, 2021, 592, 747-755.	13.7	73
27	Variation in predicted COVIDâ€19 risk among lemurs and lorises. American Journal of Primatology, 2021, 83, e23255.	0.8	7
28	Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biology, 2021, 22, 120.	3.8	69
29	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	13.7	1,139
30	Balanced imitation sustains song culture in zebra finches. Nature Communications, 2021, 12, 2562.	5.8	19
31	Controlling for activityâ€dependent genes and behavioral states is critical for determining brain relationships within and across species. Journal of Comparative Neurology, 2021, 529, 3206-3221.	0.9	7
32	The genome sequence of the brown trout, Salmo trutta Linnaeus 1758. Wellcome Open Research, 2021, 6, 108.	0.9	15
33	As above, so below: Whole transcriptome profiling demonstrates strong molecular similarities between avian dorsal and ventral pallial subdivisions. Journal of Comparative Neurology, 2021, 529, 3222-3246.	0.9	15
34	The role of sex chromosomes and sex hormones in vocal learning systems. Hormones and Behavior, 2021, 132, 104978.	1.0	5
35	Hiâ€C scaffolded short―and longâ€read genome assemblies of the California sea lion are broadly consistent for syntenic inference across 45 million years of evolution. Molecular Ecology Resources, 2021, 21, 2455-2470.	2.2	7
36	Population genomics of the critically endangered kÄkÄpÅ• Cell Genomics, 2021, 1, 100002.	3.0	106

#	Article	IF	CITATIONS
37	A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes. Genome Research, 2021, 31, 497-511.	2.4	30
38	Platypus and echidna genomes reveal mammalian biology and evolution. Nature, 2021, 592, 756-762.	13.7	85
39	A Relationship between the Characteristics of the Oval Nucleus of the Mesopallium and Parrot Vocal Response to Playback. Brain, Behavior and Evolution, 2021, 96, 37-48.	0.9	2
40	Positive selection in noncoding genomic regions of vocal learning birds is associated with genes implicated in vocal learning and speech functions in humans. Genome Research, 2021, 31, 2035-2049.	2.4	16
41	A high-quality genome and comparison of short- versus long-read transcriptome of the palaearctic duck <i>Aythya fuligula</i> (tufted duck). GigaScience, 2021, 10, .	3.3	7
42	Adaptive Radiation Genomics of Two Ecologically Divergent Hawaiâ€ĩian Honeycreepers: The â€̃akiapÅlÄâ€̃au and the Hawaiâ€ĩi â€ĩamakihi. Journal of Heredity, 2020, 111, 21-32.	1.0	6
43	Six reference-quality genomes reveal evolution of bat adaptations. Nature, 2020, 583, 578-584.	13.7	210
44	Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature, 2020, 587, 246-251.	13.7	256
45	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	13.7	251
46	Building genomic infrastructure: Sequencing platinumâ€standard referenceâ€quality genomes of all cetacean species. Marine Mammal Science, 2020, 36, 1356-1366.	0.9	10
47	Tempo and Pattern of Avian Brain Size Evolution. Current Biology, 2020, 30, 2026-2036.e3.	1.8	72
48	Erich D. Jarvis. Current Biology, 2020, 30, R202-R203.	1.8	0
49	A draft genome sequence of the elusive giant squid, Architeuthis dux. GigaScience, 2020, 9, .	3.3	37
50	Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype. Genome Biology and Evolution, 2019, 11, 2244-2255.	1.1	12
51	Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch. FASEB Journal, 2019, 33, 13825-13836.	0.2	26
52	The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a Host–Pathogen Arms Race in Birds. Diversity, 2019, 11, 131.	0.7	25
53	Evolution of vocal learning and spoken language. Science, 2019, 366, 50-54.	6.0	165
54	Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4325-4333.	3.3	652

#	Article	IF	CITATIONS
55	Bayesian Semiparametric Mixed Effects Markov Models With Application to Vocalization Syntax. Journal of the American Statistical Association, 2018, 113, 1515-1527.	1.8	4
56	Divergence in problem-solving skills is associated with differential expression of glutamate receptors in wild finches. Science Advances, 2018, 4, eaao6369.	4.7	26
57	Parrot Genomes and the Evolution of Heightened Longevity and Cognition. Current Biology, 2018, 28, 4001-4008.e7.	1.8	52
58	Molecular Profiling Reveals Insight into Avian Brain Organization and Functional Columnar Commonalities with Mammals. Diversity and Commonality in Animals, 2017, , 273-289.	0.7	3
59	341. Dissecting the Molecular Mechanisms of Vocal Learning and Spoken Language. Biological Psychiatry, 2017, 81, S140.	0.7	Ο
60	A hypothesis on a role of oxytocin in the social mechanisms of speech and vocal learning. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170988.	1.2	41
61	De novo PacBio long-read and phased avian genome assemblies correct and add to reference genes generated with intermediate and short reads. CigaScience, 2017, 6, 1-16.	3.3	165
62	Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches. Scientific Reports, 2017, 7, 942.	1.6	12
63	Eliciting and Analyzing Male Mouse Ultrasonic Vocalization (USV) Songs. Journal of Visualized Experiments, 2017, , .	0.2	28
64	Axon guidance pathways served as common targets for human speech/language evolution and related disorders. Brain and Language, 2017, 174, 1-8.	0.8	13
65	A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice. Frontiers in Behavioral Neuroscience, 2016, 10, 197.	1.0	88
66	Bone-associated gene evolution and the origin of flight in birds. BMC Genomics, 2016, 17, 371.	1.2	12
67	Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles. Genome Biology and Evolution, 2016, 8, 2442-2451.	1.1	66
68	Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds. Genome Biology and Evolution, 2016, 8, 1115-1131.	1.1	20
69	Perspectives from the Avian Phylogenomics Project: Questions that Can Be Answered with Sequencing All Genomes of a Vertebrate Class. Annual Review of Animal Biosciences, 2016, 4, 45-59.	3.6	46
70	Transsynaptic Tracing from Peripheral Targets with Pseudorabies Virus Followed by Cholera Toxin and Biotinylated Dextran Amines Double Labeling. Journal of Visualized Experiments, 2015, , .	0.2	7
71	Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds. BMC Genomics, 2015, 16, 751.	1.2	58
72	Male mice song syntax depends on social contexts and influences female preferences. Frontiers in Behavioral Neuroscience, 2015, 9, 76.	1.0	158

ERICH D JARVIS

#	Article	IF	CITATIONS
73	Identification of dopamine receptors across the extant avian family tree and analysis with other clades uncovers a polyploid expansion among vertebrates. Frontiers in Neuroscience, 2015, 9, 361.	1.4	13
74	Core and Shell Song Systems Unique to the Parrot Brain. PLoS ONE, 2015, 10, e0118496.	1.1	57
75	Bird sequencing project takes off. Nature, 2015, 522, 34-34.	13.7	136
76	A refined model of the genomic basis for phenotypic variation in vertebrate hemostasis. BMC Evolutionary Biology, 2015, 15, 124.	3.2	16
77	Brain evolution by brain pathway duplication. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150056.	1.8	95
78	Avianbase: a community resource for bird genomics. Genome Biology, 2015, 16, 21.	3.8	28
79	Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida. Molecular Biology and Evolution, 2015, 32, 2832-2843.	3.5	73
80	Phylogenomic analyses data of the avian phylogenomics project. GigaScience, 2015, 4, 4.	3.3	72
81	Response to Comment on "Whole-genome analyses resolve early branches in the tree of life of modern birds― Science, 2015, 349, 1460-1460.	6.0	53
82	Surviving as an underrepresented minority scientist in a majority environment. Molecular Biology of the Cell, 2015, 26, 3692-3696.	0.9	3
83	The Origin and Diversification of Birds. Current Biology, 2015, 25, R888-R898.	1.8	209
84	Convergent differential regulation of SLITâ€ROBO axon guidance genes in the brains of vocal learners. Journal of Comparative Neurology, 2015, 523, 892-906.	0.9	73
85	Listening in. ELife, 2015, 4, e11665.	2.8	0
86	Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates. PLoS ONE, 2014, 9, e74132.	1.1	27
87	Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evolutionary Biology, 2014, 14, 249.	3.2	84
88	Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biology, 2014, 15, 557.	3.8	83
89	Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biology, 2014, 15, 539.	3.8	60
90	Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biology, 2014, 15, 549.	3.8	76

#	Article	IF	CITATIONS
91	Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 2014, 346, 1256846.	6.0	379
92	Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 2014, 346, 1254449.	6.0	300
93	Evidence for a single loss of mineralized teeth in the common avian ancestor. Science, 2014, 346, 1254390.	6.0	99
94	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	6.0	1,583
95	A flock of genomes. Science, 2014, 346, 1308-1309.	6.0	46
96	Complex evolutionary trajectories of sex chromosomes across bird taxa. Science, 2014, 346, 1246338.	6.0	258
97	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	6.0	895
98	Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science, 2014, 346, 1256780.	6.0	97
99	The basal ganglia within a cognitive system in birds and mammals. Behavioral and Brain Sciences, 2014, 37, 568-569.	0.4	6
100	Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics, 2014, 15, 1060.	1.2	71
101	Comparative genomics reveals molecular features unique to the songbird lineage. BMC Genomics, 2014, 15, 1082.	1.2	32
102	Genomic resources for the endangered Hawaiian honeycreepers. BMC Genomics, 2014, 15, 1098.	1.2	21
103	Comparative genomic data of the Avian Phylogenomics Project. GigaScience, 2014, 3, 26.	3.3	117
104	Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. GigaScience, 2014, 3, 27.	3.3	72
105	Maintenance and Neuronal Differentiation of Chicken Induced Pluripotent Stem-Like Cells. Stem Cells International, 2014, 2014, 1-14.	1.2	13
106	NSF workshop report: Discovering general principles of nervous system organization by comparing brain maps across species. Journal of Comparative Neurology, 2014, 522, 1445-1453.	0.9	35
107	High-coverage sequencing and annotated assemblies of the budgerigar genome. CigaScience, 2014, 3, 11.	3.3	75
108	Basal ganglia function, stuttering, sequencing and repair in adult songbirds. Scientific Reports, 2014, 4, 6590.	1.6	47

#	Article	IF	CITATIONS
109	A flock of genomes. Science, 2014, 346, 1308-1309.	6.0	31
110	Rudimentary substrates for vocal learning in a suboscine. Nature Communications, 2013, 4, 2082.	5.8	57
111	Molecular profiling of the developing avian telencephalon: Regional timing and brain subdivision continuities. Journal of Comparative Neurology, 2013, 521, 3666-3701.	0.9	73
112	Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns. Journal of Comparative Neurology, 2013, 521, 3614-3665.	0.9	207
113	Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience, 2013, 2, 10.	3.3	582
114	Different mechanisms are responsible for dishabituation of electrophysiological auditory responses to a change in acoustic identity than to a change in stimulus location. Neurobiology of Learning and Memory, 2013, 106, 163-176.	1.0	12
115	The genomic consequences of adaptive divergence and reproductive isolation between species of manakins. Molecular Ecology, 2013, 22, 3304-3317.	2.0	108
116	Mouse vocal communication system: Are ultrasounds learned or innate?. Brain and Language, 2013, 124, 96-116.	0.8	207
117	Detecting Neural Activity-Dependent Immediate Early Gene Expression in the Brain. , 2013, , 133-149.		1
118	Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	0.9	2
119	Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. ELife, 2013, 2, e00036.	2.8	72
120	Radioactive in situ Hybridization for Detecting Diverse Gene Expression Patterns in Tissue. Journal of Visualized Experiments, 2012, , .	0.2	19
121	Dopamine regulation of human speech and bird song: A critical review. Brain and Language, 2012, 122, 142-150.	0.8	67
122	Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 2012, 4, 12.	3.7	327
123	Convergent Differential Regulation of Parvalbumin in the Brains of Vocal Learners. PLoS ONE, 2012, 7, e29457.	1.1	45
124	Specialized Motor-Driven dusp1 Expression in the Song Systems of Multiple Lineages of Vocal Learning Birds. PLoS ONE, 2012, 7, e42173.	1.1	41
125	Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology, 2012, 30, 693-700.	9.4	946
126	Interspecies Avian Brain Chimeras Reveal That Large Brain Size Differences Are Influenced by Cell–Interdependent Processes. PLoS ONE, 2012, 7, e42477.	1.1	10

#	Article	IF	CITATIONS
127	Of Mice, Birds, and Men: The Mouse Ultrasonic Song System Has Some Features Similar to Humans and Song-Learning Birds. PLoS ONE, 2012, 7, e46610.	1.1	231
128	Dynamic Evolution of Base Composition: Causes and Consequences in Avian Phylogenomics. Molecular Biology and Evolution, 2011, 28, 2197-2210.	3.5	84
129	Microproteomics: Quantitative Proteomic Profiling of Small Numbers of Laser-Captured Cells. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5573.	0.2	27
130	Dopamine receptors in a songbird brain. Journal of Comparative Neurology, 2010, 518, 741-769.	0.9	119
131	Dopamine Receptors in a Songbird Brain. Journal of Comparative Neurology, 2010, 518, spc1-spc1.	0.9	0
132	The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons. Journal of Comparative Neurology, 2010, 518, 2873-2901.	0.9	53
133	Obtaining mtDNA genomes from next-generation transcriptome sequencing: A case study on the basal Passerida (Aves: Passeriformes) phylogeny. Molecular Phylogenetics and Evolution, 2010, 57, 466-470.	1.2	36
134	Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Molecular Ecology, 2010, 19, 266-276.	2.0	105
135	The genome of a songbird. Nature, 2010, 464, 757-762.	13.7	770
136	Nightâ€ŧime neuronal activation of Cluster N in a day―and nightâ€migrating songbird. European Journal of Neuroscience, 2010, 32, 619-624.	1.2	51
137	Empowering 21st Century Biology. BioScience, 2010, 60, 923-930.	2.2	24
138	Assessing visual requirements for social context-dependent activation of the songbird song system. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 279-289.	1.2	14
139	Behaviorally Regulated mRNA and Protein Expression in the Songbird Brain. Frontiers in Neuroscience, 2009, , 239-261.	0.0	0
140	Profiling of experience-regulated proteins in the songbird auditory forebrain using quantitative proteomics. European Journal of Neuroscience, 2008, 27, 1409-1422.	1.2	42
141	Early onset of deafeningâ€induced song deterioration and differential requirements of the pallialâ€basal ganglia vocal pathway. European Journal of Neuroscience, 2008, 28, 2519-2532.	1.2	47
142	2074v Alpha1-Beta1 and Alpha6-Beta1-Integrin. , 2008, , 1-1.		0
143	Molecular Mapping of Movement-Associated Areas in the Avian Brain: A Motor Theory for Vocal Learning Origin. PLoS ONE, 2008, 3, e1768.	1.1	246
144	Lateralized activation of Cluster N in the brains of migratory songbirds. European Journal of Neuroscience, 2007, 25, 1166-1173.	1.2	65

#	Article	IF	CITATIONS
145	The pallial basal ganglia pathway modulates the behaviorally driven gene expression of the motor pathway. European Journal of Neuroscience, 2007, 25, 2145-2160.	1.2	41
146	Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context. European Journal of Neuroscience, 2007, 25, 3406-3416.	1.2	135
147	Neural systems for vocal learning in birds and humans: a synopsis. Journal Fur Ornithologie, 2007, 148, 35-44.	1.2	87
148	Selection for and against vocal learning in birds and mammals. Ornithological Science, 2006, 5, 5-14.	0.3	106
149	Vocalizations and Associated Behaviors of the Sombre Hummingbird (Aphantochroa cirrhochloris) and the Rufous-Breasted Hermit (Claucis hirsutus) (Vocalizaciones y Comportamientos Asociados de) Tj ETQq1 1	007.84314	1 rgBT /Overl
150	Vocalizations and Associated Behaviors of the Sombre Hummingbird (Aphantochroa Cirrhochloris) and the Rufous-Breasted Hermit (Glaucis Hirsutus). Auk, 2006, 123, 1129-1148.	0.7	6
151	Computational Inference of Neural Information Flow Networks. PLoS Computational Biology, 2006, 2, e161.	1.5	124
152	VOCALIZATIONS AND ASSOCIATED BEHAVIORS OF THE SOMBRE HUMMINGBIRD (APHANTOCHROA) TJ ETQq 0 C	0 0 rgBT /C	overlock 10 T 14
153	A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15212-15217.	3.3	176
154	Social Context-Dependent Singing-Regulated Dopamine. Journal of Neuroscience, 2006, 26, 9010-9014.	1.7	176
155	Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 2005, 6, 151-159.	4.9	930
156	Rapid Behavioral and Genomic Responses to Social Opportunity. PLoS Biology, 2005, 3, e363.	2.6	249
157	Night-vision brain area in migratory songbirds. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8339-8344.	3.3	143
158	Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 2004, 20, 3594-3603.	1.8	573
159	FoxP2 Expression in Avian Vocal Learners and Non-Learners. Journal of Neuroscience, 2004, 24, 3164-3175.	1.7	393
160	Songbirds and the Revised Avian Brain Nomenclature. Annals of the New York Academy of Sciences, 2004, 1016, 77-108.	1.8	146
161	Learned Birdsong and the Neurobiology of Human Language. Annals of the New York Academy of Sciences, 2004, 1016, 749-777.	1.8	467
162	Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology, 2004, 473, 377-414.	0.9	1,054

ERICH D JARVIS

#	Article	IF	CITATIONS
163	Differential expression of glutamate receptors in avian neural pathways for learned vocalization. Journal of Comparative Neurology, 2004, 476, 44-64.	0.9	136
164	The Avian Brain Nomenclature Forum: Terminology for a New Century in Comparative Neuroanatomy. Journal of Comparative Neurology, 2004, 473, E1-E6.	0.9	37
165	Brains and birdsong. , 2004, , 226-271.		44
166	Analysis of the Mouse Transcriptome for Genes Involved in the Function of the Nervous System. Genome Research, 2003, 13, 1395-1401.	2.4	30
167	Influence of network topology and data collection on network inference. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2003, , 164-75.	0.7	9
168	Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 2002, 18, S216-S224.	1.8	118
169	Induction of Hippocampal Long-Term Potentiation during Waking Leads to Increased Extrahippocampal <i>zif-268</i> Expression during Ensuing Rapid-Eye-Movement Sleep. Journal of Neuroscience, 2002, 22, 10914-10923.	1.7	231
170	A framework for integrating the songbird brain. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 961-980.	0.7	31
171	Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420, 563-573.	13.7	1,548
172	INFLUENCE OF NETWORK TOPOLOGY AND DATA COLLECTION ON NETWORK INFERENCE. , 2002, , .		15
173	Molecular mapping of brain areas involved in parrot vocal communication. Journal of Comparative Neurology, 2000, 419, 1-31.	0.9	156
174	Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature, 2000, 406, 628-632.	13.7	279
175	A relationship between behavior, neurotrophin expression, and new neuron survival. Proceedings of the United States of America, 2000, 97, 8584-8589.	3.3	191
176	A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12816-12821.	3.3	181
177	Site-Specific Retinoic Acid Production in the Brain of Adult Songbirds. Neuron, 2000, 27, 359-370.	3.8	88
178	The 70-kDa heat shock cognate protein (Hsc73) gene is enhanced by ovarian hormones in the ventromedial hypothalamus. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1686-1691.	3.3	28
179	Response to Matsuyama and Matsushita's MicroCorrespondence regarding our paper 'Classification and genetic characterization of pattern-forming Bacilli' Mol Microbiol (1998) 27: 687-703. Molecular Microbiology, 1999, 31, 1279-1281.	1.2	0
180	Chapter 2.2.2 Applying differential display to brain research. Handbook of Behavioral Neuroscience, 1999, 13, 200-211.	0.0	0

#	Article	IF	CITATIONS
181	Classification and genetic characterization of pattern-formingBacilli. Molecular Microbiology, 1998, 27, 687-703.	1.2	18
182	For Whom The Bird Sings. Neuron, 1998, 21, 775-788.	3.8	428
183	Isolation of Song-Regulated Genes in the Brain of Songbirds. , 1997, 85, 205-218.		30
184	Brain gene regulation by territorial singing behavior in freely ranging songbirds. NeuroReport, 1997, 8, 2073-2077.	0.6	57
185	Selective Expression of Insulin-Like Growth Factor II in the Songbird Brain. Journal of Neuroscience, 1997, 17, 6974-6987.	1.7	52
186	Motor-driven gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4097-4102.	3.3	351
187	Identification of Aberrantly Regulated Genes in Diseased Skin Using the cDNA Differential Display Technique. Journal of Investigative Dermatology, 1997, 108, 188-194.	0.3	61
188	Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 3406-3410.	3.3	245
189	Associative learning and stimulus novelty influence the song-induced expression of an immediate early gene in the canary forebrain Learning and Memory, 1995, 2, 62-80.	0.5	113
190	[14] Determinations of restriction fragment length polymorphism in bacteria using ribosomal RNA genes. Methods in Enzymology, 1994, 235, 184-196.	0.4	7
191	The structure of the trpE, trpD and $5\hat{a}\in^2$ trpC genes of Bacillus pumilus. Gene, 1990, 87, 71-78.	1.0	6
192	Instability of rRNA operons in Bacillus subtilis. Journal of Bacteriology, 1988, 170, 605-610.	1.0	65
193	Mapping of rRNA genes with integrable plasmids in Bacillus subtilis. Journal of Bacteriology, 1986, 165, 204-214.	1.0	36