
Michael A. Sorensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1883670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Existence of log-phase <i>Escherichia coli</i> persisters and lasting memory of a starvation pulse. Life Science Alliance, 2022, 5, e202101076.	2.8	8
2	Distinct Survival, Growth Lag, and rRNA Degradation Kinetics during Long-Term Starvation for Carbon or Phosphate. MSphere, 2022, 7, e0100621.	2.9	7
3	Hibernation factors directly block ribonucleases from entering the ribosome in response to starvation. Nucleic Acids Research, 2021, 49, 2226-2239.	14.5	21
4	Three Ribosomal Operons of Escherichia coli Contain Genes Encoding Small RNAs That Interact With Hfq and CsrA in vitro. Frontiers in Microbiology, 2021, 12, 625585.	3.5	3
5	Polyamines are Required for tRNA Anticodon Modification in Escherichia coli. Journal of Molecular Biology, 2021, 433, 167073.	4.2	6
6	Valine-Induced Isoleucine Starvation in Escherichia coli K-12 Studied by Spike-In Normalized RNA Sequencing. Frontiers in Genetics, 2020, 11, 144.	2.3	14
7	Shortâ€ŧerm kinetics of rRNA degradation in <i>Escherichia coli</i> upon starvation for carbon, amino acid or phosphate. Molecular Microbiology, 2020, 113, 951-963.	2.5	33
8	Transfer RNA instability as a stress response in <i>Escherichia coli</i> : Rapid dynamics of the tRNA pool as a function of demand. RNA Biology, 2018, 15, 586-593.	3.1	25
9	Ribosome Hibernation. Annual Review of Genetics, 2018, 52, 321-348.	7.6	110
10	Quantification of the Abundance and Charging Levels of Transfer RNAs in Escherichia coli . Journal of Visualized Experiments, 2017, , .	0.3	13
11	Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells. MBio, 2017, 8, .	4.1	190
12	Transfer RNA is highly unstable during early amino acid starvation in <i>Escherichia coli</i> . Nucleic Acids Research, 2017, 45, 793-804.	14.5	66
13	Rapid Curtailing of the Stringent Response by Toxin-Antitoxin Module-Encoded mRNases. Journal of Bacteriology, 2016, 198, 1918-1926.	2.2	27
14	Force Spectroscopy of DNA and RNA: Structure and Kinetics from Single-Molecule Experiments. Nucleic Acids and Molecular Biology, 2014, , 23-52.	0.2	0
15	A Novel Complex: A Quantum Dot Conjugated to an Active T <i>7</i> RNA Polymerase. Journal of Nanomaterials, 2013, 2013, 1-9.	2.7	5
16	mRNA pseudoknot structures can act as ribosomal roadblocks. Nucleic Acids Research, 2012, 40, 303-313.	14.5	69
17	Fullerenes May Induce Physical Changes of DNA - an Optical Tweezers Study. Biophysical Journal, 2009, 96, 344a.	0.5	0
18	Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5830-5835.	7.1	104

MICHAEL A. SORENSEN

#	Article	IF	CITATIONS
19	Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19410-19415.	7.1	54
20	Selective charging of tRNA isoacceptors induced by aminoâ€acid starvation. EMBO Reports, 2005, 6, 151-157.	4.5	201
21	Over Expression of a tRNALeu Isoacceptor Changes Charging Pattern of Leucine tRNAs and Reveals New Codon Reading. Journal of Molecular Biology, 2005, 354, 16-24.	4.2	47
22	Charging levels of four tRNA species in Escherichia coli Rel+ and Relâ´' strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy11Edited by D. E. Draper. Journal of Molecular Biology, 2001, 307, 785-798.	4.2	78
23	Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. Journal of Molecular Biology, 1998, 280, 561-569.	4.2	184
24	The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. Journal of Molecular Biology, 1998, 284, 621-631.	4.2	106
25	Aminoacylation of hypomodified tRNAGlu in vivo. Journal of Molecular Biology, 1998, 284, 609-620.	4.2	57
26	Determination of the Peptide Elongation Rate In Vivo. , 1998, 77, 129-142.		6
27	High Concentrations of ppGpp Decrease the RNA Chain Growth Rate. Journal of Molecular Biology, 1994, 236, 441-454.	4.2	81
28	lsolation and characterization of mutants with impaired regulation of rpsA, the gene encoding ribosomal protein S1 of Escherichia coli. Molecular Genetics and Genomics, 1993, 240, 23-28.	2.4	8
29	The rates of macromolecular chain elongation modulate the initiation frequencies for transcription and translation inEscherichia coli. Antonie Van Leeuwenhoek, 1993, 63, 323-331.	1.7	10
30	Synthesis of Proteins in Escherichia coli is Limited by the Concentration of Free Ribosomes. Journal of Molecular Biology, 1993, 231, 678-688.	4.2	188
31	Decreasing transcription elongation rate in Escherichia Coli exposed to amino acid starvation. Molecular Microbiology, 1992, 6, 2191-2200.	2.5	75
32	Absolute in vivo translation rates of individual codons in Escherichia coli. Journal of Molecular Biology, 1991, 222, 265-280.	4.2	260
33	Measurement of translation rates in vivo at individual codons and implication of these rate differences for gene expression. , 1990, , 207-216.		1
34	Codon usage determines translation rate in Escherichia coli. Journal of Molecular Biology, 1989, 207, 365-377.	4.2	537