Paul Spearman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/188327/publications.pdf

Version: 2024-02-01

99 papers 4,051 citations

38 h-index 59 g-index

104 all docs

104 docs citations

times ranked

104

4949 citing authors

#	Article	IF	Citations
1	AP-3 Directs the Intracellular Trafficking of HIV-1 Gag and Plays a Key Role in Particle Assembly. Cell, 2005, 120, 663-674.	28.9	210
2	Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13133-13138.	7.1	197
3	HIV-1 Egress is Gated Through Late Endosomal Membranes. Traffic, 2003, 4, 902-910.	2.7	159
4	Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15154-15159.	7.1	153
5	The I Domain Is Required for Efficient Plasma Membrane Binding of Human Immunodeficiency Virus Type 1 Pr55 ^{Gag} . Journal of Virology, 1998, 72, 2723-2732.	3.4	133
6	Immunoelectron Microscopic Evidence for Tetherin/BST2 as the Physical Bridge between HIV-1 Virions and the Plasma Membrane. PLoS Pathogens, 2010, 6, e1000749.	4.7	130
7	Serological Responses to an Avian Influenza A/H7N9 Vaccine Mixed at the Point-of-Use With MF59 Adjuvant. JAMA - Journal of the American Medical Association, 2014, 312, 1409.	7.4	126
8	Vaccination establishes clonal relatives of germinal center T cells in the blood of humans. Journal of Experimental Medicine, 2017, 214, 2139-2152.	8.5	106
9	Mapping and Characterization of the N-Terminal I Domain of Human Immunodeficiency Virus Type 1 Pr55Gag. Journal of Virology, 2000, 74, 7238-7249.	3.4	104
10	APOBEC3G Multimers Are Recruited to the Plasma Membrane for Packaging into Human Immunodeficiency Virus Type 1 Virus-Like Particles in an RNA-Dependent Process Requiring the NC Basic Linker. Journal of Virology, 2007, 81, 5000-5013.	3.4	99
11	Rab11-FIP1C and Rab14 Direct Plasma Membrane Sorting and Particle Incorporation of the HIV-1 Envelope Glycoprotein Complex. PLoS Pathogens, 2013, 9, e1003278.	4.7	91
12	The Pericentriolar Recycling Endosome Plays a Key Role in Vpuâ€mediated Enhancement of HIVâ€1 Particle Release. Traffic, 2006, 7, 298-307.	2.7	89
13	A Novel Fluorescence Resonance Energy Transfer Assay Demonstrates that the Human Immunodeficiency Virus Type 1 Pr55 Gag I Domain Mediates Gag-Gag Interactions. Journal of Virology, 2004, 78, 1230-1242.	3.4	81
14	Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathogens, 2017, 13, e1006181.	4.7	79
15	Independent Segregation of Human Immunodeficiency Virus Type 1 Gag Protein Complexes and Lipid Rafts. Journal of Virology, 2003, 77, 1916-1926.	3.4	78
16	Myristoylation Is Required for Human Immunodeficiency Virus Type 1 Gag-Gag Multimerization in Mammalian Cells. Journal of Virology, 2007, 81, 12899-12910.	3.4	78
17	Human Immunodeficiency Virus Replication in a Primary Effusion Lymphoma Cell Line Stimulates Lytic-Phase Replication of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 1999, 73, 10329-10338.	3.4	78
18	Microscale Generation of Cardiospheres Promotes Robust Enrichment of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2014, 3, 260-268.	4.8	73

#	Article	IF	Citations
19	A Trimeric, V2-Deleted HIV-1 Envelope Glycoprotein Vaccine Elicits Potent Neutralizing Antibodies but Limited Breadth of Neutralization in Human Volunteers. Journal of Infectious Diseases, 2011, 203, 1165-1173.	4.0	71
20	Tetherin/BST-2 Is Essential for the Formation of the Intracellular Virus-Containing Compartment in HIV-Infected Macrophages. Cell Host and Microbe, 2012, 12, 360-372.	11.0	70
21	Warp Speed for Coronavirus Disease 2019 (COVID-19) Vaccines: Why Are Children Stuck in Neutral?. Clinical Infectious Diseases, 2021, 73, 336-340.	5.8	70
22	Viral interactions with host cell Rab GTPases. Small GTPases, 2018, 9, 192-201.	1.6	61
23	HIV-specific CD4-induced Antibodies Mediate Broad and Potent Antibody-dependent Cellular Cytotoxicity Activity and are Commonly Detected in Plasma from HIV-infected Humans. EBioMedicine, 2015, 2, 1464-1477.	6.1	60
24	EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression. PLoS Pathogens, 2016, 12, e1005622.	4.7	59
25	Safety and Immunogenicity of Influenza A H5 Subunit Vaccines: Effect of Vaccine Schedule and Antigenic Variant. Journal of Infectious Diseases, 2011, 203, 666-673.	4.0	56
26	Safety and immunogenicity of a CTL multiepitope peptide vaccine for HIV with or without GM-CSF in a phase I trial. Vaccine, 2009, 27, 243-249.	3.8	55
27	A polyvalent inactivated rhinovirus vaccine is broadly immunogenic in rhesus macaques. Nature Communications, 2016, 7, 12838.	12.8	55
28	HIV Vaccine Development: Lessons from the Past and Promise for the Future. Current HIV Research, 2003, 1, 101-120.	0.5	53
29	Induction of Neutralizing Antibodies against Human Immunodeficiency Virus Type 1 Primary Isolates by Gag-Env Pseudovirion Immunization. Journal of Virology, 2005, 79, 14804-14814.	3.4	51
30	A tyrosine-based motif in the HIV-1 envelope glycoprotein tail mediates cell-type– and Rab11-FIP1C–dependent incorporation into virions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7575-7580.	7.1	50
31	HIV-related proteins prolong macrophage survival through induction of Triggering receptor expressed on myeloid cells-1. Scientific Reports, 2017, 7, 42028.	3.3	47
32	Evidence of a Source of HIV Type 1 within the Central Nervous System by Ultraintensive Sampling of Cerebrospinal Fluid and Plasma. AIDS Research and Human Retroviruses, 2000, 16, 1491-1502.	1.1	46
33	ROCK1 and LIM Kinase Modulate Retrovirus Particle Release and Cell-Cell Transmission Events. Journal of Virology, 2014, 88, 6906-6921.	3.4	46
34	Immunogenicity of Avian Influenza A/Anhui/01/2005 (H5N1) Vaccine With MF59 Adjuvant. JAMA - Journal of the American Medical Association, 2014, 312, 1420.	7.4	45
35	Current Progress in the Development of HIV Vaccines. Current Pharmaceutical Design, 2006, 12, 1147-1167.	1.9	44
36	Filamin A Protein Interacts with Human Immunodeficiency Virus Type 1 Gag Protein and Contributes to Productive Particle Assembly. Journal of Biological Chemistry, 2011, 286, 28498-28510.	3.4	42

#	Article	IF	Citations
37	HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation. Journal of Virology, 2018, 92, .	3.4	42
38	The Intracellular Virus-Containing Compartments in Primary Human Macrophages Are Largely Inaccessible to Antibodies and Small Molecules. PLoS ONE, 2012, 7, e35297.	2.5	42
39	Steady-state pharmacokinetics of indinavir in cerebrospinal fluid and plasma among adults with human immunodeficiency virus type 1 infection. Clinical Pharmacology and Therapeutics, 2000, 68, 367-374.	4.7	41
40	HIV-1 decreases Nrf2/ARE activity and phagocytic function in alveolar macrophages. Journal of Leukocyte Biology, 2017, 102, 517-525.	3.3	38
41	Comparative analysis of human microglial models for studies of HIV replication and pathogenesis. Retrovirology, 2020, 17, 35.	2.0	38
42	Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology, 2011, 8, 26.	2.0	37
43	Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu. Nature Medicine, 2008, 14, 641-647.	30.7	36
44	The Tetherin/BST-2 Coiled-Coil Ectodomain Mediates Plasma Membrane Microdomain Localization and Restriction of Particle Release. Journal of Virology, 2012, 86, 2259-2272.	3.4	34
45	Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques. Journal of Virology, 2016, 90, 8842-8854.	3.4	34
46	Comparison of Human Immunodeficiency Virus Type 1 RNA Sequence Heterogeneity in Cerebrospinal Fluid and Plasma. Journal of Clinical Microbiology, 2000, 38, 4637-4639.	3.9	31
47	Different Pattern of Immunoglobulin Gene Usage by HIV-1 Compared to Non-HIV-1 Antibodies Derived from the Same Infected Subject. PLoS ONE, 2012, 7, e39534.	2.5	30
48	Three-Dimensional Structural Characterization of HIV-1 Tethered to Human Cells. Journal of Virology, 2016, 90, 1507-1521.	3.4	27
49	DNA vaccine priming for seasonal influenza vaccine in children and adolescents 6 to 17 years of age: A phase 1 randomized clinical trial. PLoS ONE, 2018, 13, e0206837.	2.5	24
50	Direct Comparison of Antigen Production and Induction of Apoptosis by Canarypox Virus- and Modified Vaccinia Virus Ankara-Human Immunodeficiency Virus Vaccine Vectors. Journal of Virology, 2007, 81, 7022-7033.	3.4	23
51	P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions. Journal of Virology, 2015, 89, 9368-9382.	3.4	23
52	HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors. Current Topics in Medicinal Chemistry, $2015, 16, 1154-1166$.	2.1	23
53	Sternoclavicular joint septic arthritis with small-colony variant Staphylococcus aureus. Diagnostic Microbiology and Infectious Disease, 1996, 26, 13-15.	1.8	21
54	Identification of a Single Amino Acid Required for APOBEC3 Antiretroviral Cytidine Deaminase Activity. Journal of Virology, 2011, 85, 5691-5695.	3.4	21

#	Article	IF	Citations
55	Placental Hofbauer cells assemble and sequester HIVâ€1 in tetraspaninâ€positive compartments that are accessible to broadly neutralizing antibodies. Journal of the International AIDS Society, 2015, 18, 19385.	3.0	21
56	A Putative Cyclin-binding Motif in Human SAMHD1 Contributes to Protein Phosphorylation, Localization, and Stability. Journal of Biological Chemistry, 2016, 291, 26332-26342.	3.4	21
57	Neutralizing antibody responses in Africa green monkeys naturally infected with simian immunodeficiency virus (SIVagm). Journal of Medical Primatology, 1999, 28, 97-104.	0.6	18
58	Pseudovirion Particle Production by Live Poxvirus Human Immunodeficiency Virus Vaccine Vector Enhances Humoral and Cellular Immune Responses. Journal of Virology, 2005, 79, 5537-5547.	3.4	18
59	Diagnostic testing for SARS-CoV-2/COVID19. Current Opinion in Pediatrics, 2021, 33, 122-128.	2.0	18
60	A Bivalent, Spherical Virus-Like Particle Vaccine Enhances Breadth of Immune Responses against Pathogenic Ebola Viruses in Rhesus Macaques. Journal of Virology, 2020, 94, .	3.4	17
61	Direct evidence for intracellular anterograde co-transport of M-PMV Gag and Env on microtubules. Virology, 2014, 449, 109-119.	2.4	16
62	Adipocyte inflammation and pathogenesis of viral pneumonias: an overlooked contribution. Mucosal Immunology, 2021, 14, 1224-1234.	6.0	16
63	Defective HIV-1 Particle Assembly in AP-3-Deficient Cells Derived from Patients with Hermansky-Pudlak Syndrome Type 2. Journal of Virology, 2012, 86, 11242-11253.	3.4	15
64	Targeted Elimination of Tumorigenic Human Pluripotent Stem Cells Using Suicide-Inducing Virus-like Particles. ACS Chemical Biology, 2018, 13, 2329-2338.	3.4	15
65	ACUTE ASEPTIC MENINGITIS SECONDARY TO INTRAVENOUS IMMUNOGLOBULIN IN A PATIENT WITH KAWASAKI SYNDROME. Pediatric Infectious Disease Journal, 1998, 17, 1054-1056.	2.0	15
66	An siRNA Screen of Membrane Trafficking Genes Highlights Pathways Common to HIV-1 and M-PMV Virus Assembly and Release. PLoS ONE, 2014, 9, e106151.	2.5	15
67	Dracunculiasis: Report of an Imported Case in the United States. Clinical Infectious Diseases, 1997, 25, 749-750.	5.8	14
68	The ability of SAMHD1 to block HIV-1 but not SIV requires expression of MxB. Virology, 2019, 531, 260-268.	2.4	14
69	Advances in HIV-1 Assembly. Viruses, 2022, 14, 478.	3.3	14
70	Low frequency of broadly neutralizing HIV antibodies during chronic infection even in quaternary epitope targeting antibodies containing large numbers of somatic mutations. Molecular Immunology, 2016, 70, 94-103.	2.2	12
71	The Impact of Cesarean Delivery on Transmission of Infectious Agents to the Neonate. Clinics in Perinatology, 2008, 35, 407-420.	2.1	11
72	Point-of-Use Mixing of Influenza H5N1 Vaccine and MF59 Adjuvant for Pandemic Vaccination Preparedness: Antibody Responses and Safety. A Phase 1 Clinical Trial. Open Forum Infectious Diseases, 2014, 1, ofu102.	0.9	11

#	Article	IF	Citations
73	Immunogenicity and safety of four different dosing regimens of anthrax vaccine adsorbed for post-exposure prophylaxis for anthrax in adults. Vaccine, 2014, 32, 6284-6293.	3.8	10
74	A phase 1, randomized, controlled dose-escalation study of EP-1300 polyepitope DNA vaccine against Plasmodium falciparum malaria administered via electroporation. Vaccine, 2016, 34, 5571-5578.	3.8	10
75	HIV Impairs Alveolar Macrophage Function via MicroRNA-144-Induced Suppression of Nrf2. American Journal of the Medical Sciences, 2021, 361, 90-97.	1.1	10
76	Parainfluenza Virus 5 Priming Followed by SIV/HIV Virus-Like-Particle Boosting Induces Potent and Durable Immune Responses in Nonhuman Primates. Frontiers in Immunology, 2021, 12, 623996.	4.8	10
77	Tetherin Is as Tetherin Does. Cell, 2009, 139, 456-457.	28.9	9
78	NEISSERIA SICCA/SUBFLAVA BACTEREMIA PRESENTING AS CUTANEOUS NODULES IN AN IMMUNOCOMPROMISED HOST. Pediatric Infectious Disease Journal, 2009, 28, 661-663.	2.0	9
79	Restriction of Retroviral Replication by Tetherin/BST-2. Molecular Biology International, 2012, 2012, 1-9.	1.7	9
80	A Mason-Pfizer Monkey Virus Gag-GFP Fusion Vector Allows Visualization of Capsid Transport in Live Cells and Demonstrates a Role for Microtubules. PLoS ONE, 2013, 8, e83863.	2.5	9
81	Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein. PLoS ONE, 2016, 11, e0158861.	2.5	8
82	A novel Ebola virus antibody-dependent cell-mediated cytotoxicity (Ebola ADCC) assay. Journal of Immunological Methods, 2018, 460, 10-16.	1.4	8
83	Rapid Boosting of HIV-1 Neutralizing Antibody Responses in Humans Following a Prolonged Immunologic Rest Period. Journal of Infectious Diseases, 2019, 219, 1755-1765.	4.0	7
84	Meta-analysis of HIV-1 vaccine elicited mucosal antibodies in humans. Npj Vaccines, 2021, 6, 56.	6.0	7
85	Cellular cofactors involved in HIV assembly and budding. Current Opinion in HIV and AIDS, 2006, 1, 200-207.	3.8	6
86	The HIV-1 matrix protein does not interact directly with the protein interactive domain of AP-3δ. Virus Research, 2012, 169, 411-414.	2.2	6
87	Methicillin-resistant Staphylococcus aureus Empyema Necessitatis in a Breast-fed Neonate. Pediatric Infectious Disease Journal, 2014, 33, 668-669.	2.0	6
88	Comparison of Roche MONITOR and Organon Teknika NucliSens Assays To Quantify Human Immunodeficiency Virus Type 1 RNA in Cerebrospinal Fluid. Journal of Clinical Microbiology, 2001, 39, 1612-1614.	3.9	5
89	Acute pancreatitis associated with dolutegravir and lamivudine/abacavir administration. Aids, 2015, 29, 390-392.	2.2	5
90	Nucleosides accelerate inflammatory osteolysis, acting as distinct innate immune activators. Journal of Bone and Mineral Research, 2011, 26, 1913-1925.	2.8	4

#	Article	IF	CITATIONS
91	Seroprevalence of SARS-CoV-2 infection in Cincinnati Ohio USA from August to December 2020. PLoS ONE, 2021, 16, e0254667.	2.5	4
92	CAML Does Not Modulate Tetherin-Mediated Restriction of HIV-1 Particle Release. PLoS ONE, 2010, 5, e9005.	2.5	4
93	Pediatric Infectious Diseases Meets the Future. Journal of the Pediatric Infectious Diseases Society, 2019, 8, 9-12.	1.3	3
94	Challenges and solutions for instituting an efficient maintenance program for laboratory equipment in Central Asian, and developing world, countries. BMC Public Health, 2019, 19, 476.	2.9	3
95	An Imperfect Rule for the Particle Roost. Cell Host and Microbe, 2010, 7, 261-263.	11.0	2
96	The future of careers in pediatric infectious diseases. Current Opinion in Pediatrics, 2019, 31, 144-147.	2.0	2
97	Novel Treatment of Infant With COVID-19 With the Sialidase Fusion Protein, DAS181. Pediatric Infectious Disease Journal, 2021, 40, e234-e235.	2.0	2
98	HIV-1 Broadly Neutralizing Antibodies Take the Road Less Traveled, and That Makes All the Difference. Cell Host and Microbe, 2020, 27, 487-488.	11.0	1
99	Pediatric Infectious Disease Specialists: An Answer to Social Media Misinformation on Coronavirus Disease 2019. Journal of the Pediatric Infectious Diseases Society, 2021, 10, 703-705.	1.3	O