List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1882886/publications.pdf Version: 2024-02-01

		29994	29081
182	12,214	54	104
papers	citations	h-index	g-index
195	195	195	12156
all docs	docs citations	times ranked	citing authors

ΤΗΠΟ ΗΟΕΜΑΝΝ

#	Article	IF	CITATIONS
1	Nanopesticide research: Current trends and future priorities. Environment International, 2014, 63, 224-235.	4.8	582
2	Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 2008, 17, 326-343.	1.1	535
3	Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects. Water Research, 2018, 139, 83-100.	5.3	506
4	Pharmaceutical pollution of the world's rivers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	495
5	Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environmental Pollution, 2016, 214, 194-201.	3.7	448
6	Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling. Critical Reviews in Environmental Science and Technology, 2013, 43, 1823-1867.	6.6	416
7	Sorption of organic compounds by aged polystyrene microplastic particles. Environmental Pollution, 2018, 236, 218-225.	3.7	403
8	Release of TiO ₂ Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environmental Science & Technology, 2014, 48, 5415-5422.	4.6	344
9	Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Research, 2017, 124, 673-692.	5.3	312
10	Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere, 2008, 72, 1594-1601.	4.2	296
11	Algal testing of titanium dioxide nanoparticles—Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 2010, 269, 190-197.	2.0	273
12	Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC - Trends in Analytical Chemistry, 2011, 30, 425-436.	5.8	243
13	Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 2020, 1, 416-425.	6.2	239
14	Native polycyclic aromatic hydrocarbons (PAH) in coals – A hardly recognized source of environmental contamination. Science of the Total Environment, 2009, 407, 2461-2473.	3.9	223
15	Nanostructured TiO ₂ : Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environmental Science & Technology, 2009, 43, 8098-8104.	4.6	216
16	Spot the Difference: Engineered and Natural Nanoparticles in the Environment—Release, Behavior, and Fate. Angewandte Chemie - International Edition, 2014, 53, 12398-12419.	7.2	210
17	Polyethylene microplastics influence the transport of organic contaminants in soil. Science of the Total Environment, 2019, 657, 242-247.	3.9	208
18	The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE, 2019, 14, e0217165.	1.1	190

#	Article	IF	CITATIONS
19	Commercial Titanium Dioxide Nanoparticles in Both Natural and Synthetic Water: Comprehensive Multidimensional Testing and Prediction of Aggregation Behavior. Environmental Science & Technology, 2011, 45, 10045-10052.	4.6	175
20	Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles. Environmental Science & Technology, 2017, 51, 2499-2507.	4.6	146
21	Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano, 2017, 4, 307-314.	2.2	128
22	Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media. Environmental Pollution, 2009, 157, 1117-1126.	3.7	119
23	Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nature Nanotechnology, 2019, 14, 208-216.	15.6	115
24	Effect of pH and Stream Order on Iron and Arsenic Speciation in Boreal Catchments. Environmental Science & Technology, 2013, 47, 7120-7128.	4.6	113
25	Measuring and Modeling Adsorption of PAHs to Carbon Nanotubes Over a Six Order of Magnitude Wide Concentration Range. Environmental Science & Technology, 2011, 45, 6011-6017.	4.6	107
26	Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature. Science of the Total Environment, 2017, 580, 770-775.	3.9	107
27	Where is the nano? Analytical approaches for the detection and quantification of TiO ₂ engineered nanoparticles in surface waters. Environmental Science: Nano, 2018, 5, 313-326.	2.2	101
28	Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. International Journal of Environmental Research and Public Health, 2015, 12, 15756-15768.	1.2	100
29	Using FIFFF and aTEM to determine trace metal–nanoparticle associations in riverbed sediment. Environmental Chemistry, 2010, 7, 82.	0.7	97
30	Nanosized Iron Oxide Colloids Strongly Enhance Microbial Iron Reduction. Applied and Environmental Microbiology, 2010, 76, 184-189.	1.4	96
31	Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials. Environmental Science & Technology, 2020, 54, 4583-4591.	4.6	96
32	Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. Chemosphere, 2012, 87, 918-924.	4.2	95
33	Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environmental Pollution, 2010, 158, 3472-3481.	3.7	87
34	Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean. Science of the Total Environment, 2010, 408, 2402-2408.	3.9	86
35	Natural Organic Matter Concentration and Hydrochemistry Influence Aggregation Kinetics of Functionalized Engineered Nanoparticles. Environmental Science & Technology, 2013, 47, 4113-4120.	4.6	86
36	Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. Water Research, 2008, 42, 2051-2060.	5.3	85

#	Article	IF	CITATIONS
37	Impacts of (Nano)formulations on the Fate of an Insecticide in Soil and Consequences for Environmental Exposure Assessment. Environmental Science & Technology, 2016, 50, 10960-10967.	4.6	84
38	The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation. Geochimica Et Cosmochimica Acta, 2013, 102, 213-225.	1.6	82
39	Environmental fate of nanopesticides: durability, sorption and photodegradation of nanoformulated clothianidin. Environmental Science: Nano, 2018, 5, 882-889.	2.2	79
40	Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil. Environmental Pollution, 2008, 151, 121-129.	3.7	78
41	The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquatic Toxicology, 2012, 118-119, 1-8.	1.9	78
42	Vulnerability of drinking water supplies to engineered nanoparticles. Water Research, 2016, 96, 255-279.	5.3	77
43	River-derived humic substances as iron chelators in seawater. Marine Chemistry, 2015, 174, 85-93.	0.9	74
44	Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environmental Pollution, 2013, 179, 53-60.	3.7	73
45	Distribution of polycyclic aromatic hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar River. Journal of Soils and Sediments, 2007, 7, 216-222.	1.5	72
46	Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. Journal of Hazardous Materials, 2018, 345, 107-113.	6.5	71
47	Anthropogenic gadolinium in freshwater and drinking water systems. Water Research, 2020, 182, 115966.	5.3	70
48	First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS. Journal of Analytical Atomic Spectrometry, 2015, 30, 1286-1296.	1.6	66
49	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	2.2	65
50	Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC - Trends in Analytical Chemistry, 2019, 113, 392-401.	5.8	65
51	Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin. Environmental Pollution, 2011, 159, 2690-2697.	3.7	61
52	Dispersion State and Humic Acids Concentration-Dependent Sorption of Pyrene to Carbon Nanotubes. Environmental Science & Technology, 2012, 46, 7166-7173.	4.6	61
53	Using FLOWFFF and HPSEC to determine trace metal–colloid associations in wetland runoff. Water Research, 2013, 47, 2757-2769.	5.3	59
54	Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environmental Science: Nano, 2020, 7, 351-367.	2.2	59

#	Article	IF	CITATIONS
55	The influence of pH on iron speciation in podzol extracts: Iron complexes with natural organic matter, and iron mineral nanoparticles. Science of the Total Environment, 2013, 461-462, 108-116.	3.9	55
56	Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Water Research, 2014, 50, 70-79.	5.3	54
57	Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. Environmental Science: Nano, 2018, 5, 2500-2518.	2.2	54
58	Nanoscale lignin particles as sources of dissolved iron to the ocean. Global Biogeochemical Cycles, 2012, 26, .	1.9	53
59	Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environmental Science and Pollution Research, 2014, 21, 11699-11707.	2.7	53
60	HCHs and DDTs in sediment-dwelling animals from the Yangtze Estuary, China. Chemosphere, 2006, 62, 381-389.	4.2	48
61	Cytotoxicity of Biochar: A Workplace Safety Concern?. Environmental Science and Technology Letters, 2017, 4, 362-366.	3.9	48
62	Occurrence and behaviour of selected hydrophobic alkylphenolic compounds in the Danube River. Environmental Pollution, 2009, 157, 2759-2768.	3.7	46
63	Colloid-associated export of arsenic in stream water during stormflow events. Chemical Geology, 2013, 352, 81-91.	1.4	46
64	Identification of carbonaceous geosorbents for PAHs by organic petrography in river floodplain soils. Chemosphere, 2008, 71, 2158-2167.	4.2	45
65	How Redox Conditions and Irradiation Affect Sorption of PAHs by Dispersed Fullerenes (nC60). Environmental Science & Technology, 2013, 47, 6935-6942.	4.6	45
66	Predicting the Sorption of Aromatic Acids to Noncarbonized and Carbonized Sorbents. Environmental Science & amp; Technology, 2016, 50, 3641-3648.	4.6	44
67	Sensitivity towards the GRP78 inhibitor KP1339/IT-139 is characterized by apoptosis induction via caspase 8 upon disruption of ER homeostasis. Cancer Letters, 2017, 404, 79-88.	3.2	44
68	Sulfidated nano-scale zerovalent iron is able to effectively reduce in situ hexavalent chromium in a contaminated aquifer. Journal of Hazardous Materials, 2021, 405, 124665.	6.5	42
69	Vertical Distribution and Speciation of Trace Metals in Weathering Flotation Residues of a Zinc/Lead Sulfide Mine. Journal of Environmental Quality, 2007, 36, 61-69.	1.0	41
70	Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using Flow Field-Flow Fractionation. Journal of Chromatography A, 2011, 1218, 6763-6773.	1.8	41
71	Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment. Environmental Science & Technology, 2022, 56, 4702-4710.	4.6	41
72	Colloid facilitated transport of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to the groundwater at Ma Da Area, Vietnam. Environmental Science and Pollution Research, 2007, 14, 223-224.	2.7	40

#	Article	IF	CITATIONS
73	Ageing of synthetic and natural schwertmannites at pH 2—8. Clay Minerals, 2008, 43, 437-448.	0.2	40
74	TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment. Journal of Analytical Atomic Spectrometry, 2017, 32, 1400-1411.	1.6	39
75	Bioavailability and toxicity of pyrene in soils upon biochar and compost addition. Science of the Total Environment, 2017, 595, 132-140.	3.9	39
76	Natural, anthropogenic and fossil organic matter in river sediments and suspended particulate matter: A multi-molecular marker approach. Science of the Total Environment, 2011, 409, 905-919.	3.9	38
77	Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges. Journal of Chromatography A, 2016, 1440, 150-159.	1.8	38
78	Key Physicochemical Properties Dictating Gastrointestinal Bioaccessibility of Microplastics-Associated Organic Xenobiotics: Insights from a Deep Learning Approach. Environmental Science & Technology, 2020, 54, 12051-12062.	4.6	38
79	Parameter estimation and uncertainty analysis in hydrological modeling. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	2.8	38
80	Sorption of polycyclic aromatic hydrocarbons (PAHs) to carbonaceous materials in a river floodplain soil. Environmental Pollution, 2008, 156, 1357-1363.	3.7	37
81	Microplastics and nanoplastics barely enhance contaminant mobility in agricultural soils. Communications Earth & Environment, 2021, 2, .	2.6	37
82	Quantifying the influence of humic acid adsorption on colloidal microsphere deposition onto iron-oxide-coated sand. Environmental Pollution, 2010, 158, 3498-3506.	3.7	36
83	Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Analytical and Bioanalytical Chemistry, 2014, 406, 3895-907.	1.9	36
84	Comparability of and Alternatives to Leaching Tests for the Assessment of the Emission of Inorganic Soil Contamination (11 pp). Journal of Soils and Sediments, 2006, 6, 102-112.	1.5	34
85	Freshwater suspended particulate matter—Key components and processes in floc formation and dynamics. Water Research, 2022, 220, 118655.	5.3	34
86	Asymmetrical flow-field-flow fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. Journal of Chromatography A, 2014, 1372, 204-211.	1.8	33
87	Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meat. Accreditation and Quality Assurance, 2015, 20, 3-16.	0.4	33
88	Microplastic extraction protocols can impact the polymer structure. Microplastics and Nanoplastics, 2021, 1, .	4.1	33
89	Identifying sources of polycyclic aromatic hydrocarbons (PAHs) in soils: distinguishing point and non-point sources using an extended PAH spectrum and n-alkanes. Journal of Soils and Sediments, 2008, 8, 312-322.	1.5	32
90	Data on sorption of organic compounds by aged polystyrene microplastic particles. Data in Brief, 2018, 18, 474-479.	0.5	32

#	Article	IF	CITATIONS
91	Synthesis and biological evaluation of biotin-conjugated anticancer thiosemicarbazones and their iron(III) and copper(II) complexes. Journal of Inorganic Biochemistry, 2019, 190, 85-97.	1.5	32
92	Tetrachloroferrate containing ionic liquids: Magnetic- and aggregation behavior. Inorganic Chemistry Communication, 2010, 13, 1485-1488.	1.8	31
93	Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability. NanoImpact, 2018, 11, 42-50.	2.4	31
94	PAH desorption from river floodplain soils using supercritical fluid extraction. Environmental Pollution, 2008, 156, 745-752.	3.7	30
95	Influence of ionic strength and pH on the limitation of latex microsphere deposition sites on iron-oxide coated sand by humic acid. Environmental Pollution, 2011, 159, 1896-1904.	3.7	30
96	Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylene. Environmental Science & Technology, 2022, 56, 4425-4436.	4.6	30
97	Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. Science of the Total Environment, 2016, 563-564, 713-723.	3.9	29
98	Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 6679-6691.	1.9	29
99	Effect of ageing on the properties and polycyclic aromatic hydrocarbon composition of biochar. Environmental Sciences: Processes and Impacts, 2017, 19, 768-774.	1.7	29
100	Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years. Communications Earth & Environment, 2021, 2, .	2.6	29
101	Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments. Nature Microbiology, 2021, 6, 885-898.	5.9	29
102	The lack of microbial degradation of polycyclic aromatic hydrocarbons from coal-rich soils. Environmental Pollution, 2011, 159, 623-629.	3.7	27
103	Natural organic matter and iron export from the Tanner Moor, Austria. Limnologica, 2013, 43, 239-244.	0.7	27
104	Anthropogenic gadolinium as a transient tracer for investigating river bank filtration. Science of the Total Environment, 2016, 571, 1432-1440.	3.9	27
105	Bovine Serum Albumin Adsorption to Iron-Oxide Coated Sands Can Change Microsphere Deposition Mechanisms. Environmental Science & amp; Technology, 2012, 46, 2583-2591.	4.6	26
106	Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality. Science of the Total Environment, 2013, 443, 14-23.	3.9	26
107	Sorption behavior of carbon nanotubes: Changes induced by functionalization, sonication and natural organic matter. Science of the Total Environment, 2014, 497-498, 133-138.	3.9	25
108	Pyrolysis of waste materials: Characterization and prediction of sorption potential across a wide range of mineral contents and pyrolysis temperatures. Bioresource Technology, 2016, 214, 225-233.	4.8	25

#	Article	IF	CITATIONS
109	Emerging contaminants in sediment core from the Iron Gate I Reservoir on the Danube River. Science of the Total Environment, 2019, 662, 77-87.	3.9	25
110	Zn and Pb release of sphalerite (ZnS)-bearing mine waste tailings. Journal of Soils and Sediments, 2008, 8, 433-441.	1.5	24
111	Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME Journal, 2019, 13, 3131-3134.	4.4	24
112	Accessibility of Humic-Associated Fe to a Microbial Siderophore: Implications for Bioavailability. Environmental Science & Technology, 2014, 48, 1015-1022.	4.6	22
113	Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide. Journal of Contaminant Hydrology, 2015, 181, 36-45.	1.6	22
114	Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	22
115	Concentrations and Distributions of Metals Associated with Dissolved Organic Matter from the Suwannee River (GA, USA). Environmental Engineering Science, 2015, 32, 54-65.	0.8	21
116	Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. Frontiers in Environmental Science, 2020, 8, .	1.5	21
117	Accurate quantification of TiO2 nanoparticles in commercial sunscreens using standard materials and orthogonal particle sizing methods for verification. Talanta, 2020, 215, 120921.	2.9	21
118	Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12). Food and Chemical Toxicology, 2012, 50, 390-398.	1.8	20
119	Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency. Science of the Total Environment, 2018, 618, 1619-1627.	3.9	20
120	A Large-Scale 3D Study on Transport of Humic Acid-Coated Goethite Nanoparticles for Aquifer Remediation. Water (Switzerland), 2020, 12, 1207.	1.2	20
121	Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles. International Journal of Pharmaceutics, 2016, 513, 309-318.	2.6	19
122	The leaching of phthalates from PVC can be determined with an infinite sink approach. MethodsX, 2019, 6, 2729-2734.	0.7	19
123	Gravel pit lake ecosystems reduce nitrate and phosphate concentrations in the outflowing groundwater. Science of the Total Environment, 2012, 420, 222-228.	3.9	18
124	Variations of common riverine contaminants in reservoir sediments. Science of the Total Environment, 2013, 458-460, 90-100.	3.9	18
125	Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: Assessing environmental behavior of functionalized gold nanoparticles on a continental scale. Environment International, 2013, 59, 53-62.	4.8	17
126	Interactions between aromatic hydrocarbons and functionalized C ₆₀ fullerenes – insights from experimental data and molecular modelling. Environmental Science: Nano, 2017, 4, 1045-1053.	2.2	17

#	Article	IF	CITATIONS
127	Synergetic Tl and As retention in secondary minerals: An example of extreme arsenic and thallium pollution. Applied Geochemistry, 2021, 135, 105114.	1.4	17
128	Quantification of river water infiltration in shallow aquifers using acesulfame and anthropogenic gadolinium. Hydrological Processes, 2016, 30, 1742-1756.	1.1	16
129	Wood ash amended biochar for the removal of lead, copper, zinc and cadmium from aqueous solution. Environmental Technology and Innovation, 2021, 24, 101961.	3.0	16
130	Organic geochemistry of Danube River sediments from PanÄevo (Serbia) to the Iron Gate dam (Serbia–Romania). Organic Geochemistry, 2010, 41, 971-974.	0.9	15
131	Nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) of liposomes: applicability of the technique for nano vesicle batch control. Analyst, The, 2016, 141, 6042-6050.	1.7	15
132	Complex-conductivity monitoring to delineate aquifer pore clogging during nanoparticles injection. Geophysical Journal International, 2019, 218, 1838-1852.	1.0	15
133	A uniform measurement expression for cross method comparison of nanoparticle aggregate size distributions. Analyst, The, 2015, 140, 5257-5267.	1.7	14
134	Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles. Environmental Science & Technology, 2017, 51, 9202-9209.	4.6	14
135	Development of a versatile analytical protocol for the comprehensive determination of the elemental composition of smartphone compartments on the example of printed circuit boards. Analytical Methods, 2018, 10, 3864-3871.	1.3	13
136	Groundwater Chemistry Has a Greater Influence on the Mobility of Nanoparticles Used for Remediation than the Chemical Heterogeneity of Aquifer Media. Environmental Science & Technology, 2020, 54, 1250-1257.	4.6	13
137	The importance of aromaticity to describe the interactions of organic matter with carbonaceous materials depends on molecular weight and sorbent geometry. Environmental Sciences: Processes and Impacts, 2020, 22, 1888-1897.	1.7	13
138	Carbonates and cherts as archives of seawater chemistry and habitability on a carbonate platform 3.35ÂGa ago: Insights from Sm/Nd dating and trace element analysis from the Strelley Pool Formation, Western Australia. Precambrian Research, 2020, 344, 105742.	1.2	13
139	Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. Analytical and Bioanalytical Chemistry, 2021, 413, 299-314.	1.9	13
140	Direct-push profiling of isotopic and hydrochemical vertical gradients. Journal of Hydrology, 2010, 385, 84-94.	2.3	12
141	Laser-Induced Breakdown-Detection for reliable online monitoring of membrane integrity. Journal of Membrane Science, 2014, 466, 313-321.	4.1	12
142	Elevated polycyclic aromatic hydrocarbons in a river floodplain soil due to coal mining activities. Water Science and Technology: Water Supply, 2007, 7, 69-74.	1.0	11
143	The Challenge: Carbon nanomaterials in the environment: New threats or wonder materials?. Environmental Toxicology and Chemistry, 2015, 34, 954-954.	2.2	11
144	Sorption to soil, biochar and compost: is prediction to multicomponent mixtures possible based on single sorbent measurements?. PeerJ, 2018, 6, e4996.	0.9	11

#	Article	IF	CITATIONS
145	Biochar particle aggregation in soil pore water: the influence of ionic strength and interactions with pyrene. Environmental Sciences: Processes and Impacts, 2019, 21, 1722-1728.	1.7	11
146	Rapid analysis of gunshot residues with single-particle inductively coupled plasma time-of-flight mass spectrometry. Forensic Science International, 2022, 332, 111202.	1.3	11
147	Importance of the nugget effect in variography on modeling zinc leaching from a contaminated site using simulated annealing. Journal of Hydrology, 2010, 389, 78-89.	2.3	9
148	The molecular interactions of organic compounds with tire crumb materials differ substantially from those with other microplastics. Environmental Sciences: Processes and Impacts, 2020, 22, 121-130.	1.7	9
149	Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS. ACS Earth and Space Chemistry, 2022, 6, 943-952.	1.2	9
150	An ArcGIS [®] Approach to Include Tectonic Structures in Point Data Regionalization. Ground Water, 2009, 47, 591-597.	0.7	8
151	Optimising the transport properties and reactivity of microbially-synthesised magnetite for in situ remediation. Scientific Reports, 2018, 8, 4246.	1.6	8
152	Kolloide: Die Welt der vernachlĤsigten Dimensionen. Chemie in Unserer Zeit, 2004, 38, 24-35.	0.1	7
153	Aqueous accelerated solvent extraction of native polycyclic aromatic hydrocarbons (PAHs) from carbonaceous river floodplain soils. Environmental Pollution, 2009, 157, 2604-2609.	3.7	7
154	Modeling colloid deposition on a protein layer adsorbed to iron-oxide-coated sand. Journal of Contaminant Hydrology, 2012, 142-143, 50-62.	1.6	7
155	A tree-based statistical classification algorithm (CHAID) for identifying variables responsible for the occurrence of faecal indicator bacteria during waterworks operations. Journal of Hydrology, 2014, 519, 909-917.	2.3	7
156	Comment on the German Draft Legislation on Hydraulic Fracturing: The Need for an Accurate State of Knowledge and for Independent Scientific Research. Environmental Science & Technology, 2015, 49, 6367-6369.	4.6	7
157	Combined Chemisorption and Complexation Generate siRNA Nanocarriers with Biophysics Optimized for Efficient Gene Knockdown and Air–Blood Barrier Crossing. ACS Applied Materials & Interfaces, 2020, 12, 30095-30111.	4.0	7
158	Additives and polymer composition influence the interaction of microplastics with xenobiotics. Environmental Chemistry, 2021, 18, 101-110.	0.7	7
159	Comparing biochar and hydrochar for reducing the risk of organic contaminants in polluted river sediments used for growing energy crops. Science of the Total Environment, 2022, 843, 157122.	3.9	7
160	Aquatische Kolloide: Kleine Teilchen ―große Wirkung. Nachrichten Aus Der Chemie, 2001, 49, 1291-1295.	0.0	6
161	Intra-laboratory assessment of a method for the detection of TiO2 nanoparticles present in sunscreens based on multi-detector asymmetrical flow field-flow fractionation. NanoImpact, 2020, 19, 100233.	2.4	6
162	Effects of heavy elements (Pb, Cu, Zn) on algal food uptake by Elphidium excavatum (Foraminifera). Heliyon, 2021, 7, e08427.	1.4	6

#	Article	IF	CITATIONS
163	Towards Standardization for Determining Dissolution Kinetics of Nanomaterials in Natural Aquatic Environments: Continuous Flow Dissolution of Ag Nanoparticles. Nanomaterials, 2022, 12, 519.	1.9	5
164	Stormwater management in urban areas using dry gallery infiltration systems. Science of the Total Environment, 2022, 823, 153705.	3.9	5
165	Methods of metal release assessment in soil water at anoxic sites. Clean - Soil, Air, Water, 2006, 34, 579-586.	0.8	4
166	Comment on Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, And Resins with Machine Learning. Environmental Science & Technology, 2020, 54, 11636-11637.	4.6	4
167	Bacterial wax esters in recent fluvial sediments. Organic Geochemistry, 2015, 89-90, 44-55.	0.9	3
168	NO2 and natural organic matter affect both soot aggregation behavior and sorption of S-metolachlor. Environmental Sciences: Processes and Impacts, 2019, 21, 1729-1735.	1.7	3
169	Towards an effective application of parameter estimation and uncertainty analysis to mathematical groundwater models. SN Applied Sciences, 2022, 4, .	1.5	3
170	Assessment of geothermal impacts on urban aquifers using a polar coordinates-based approach. Journal of Hydrology, 2022, 612, 128209.	2.3	3
171	Material Flow Analysis: An Effectiveness Assessment Tool for In Situ Thermal Remediation. Vadose Zone Journal, 2013, 12, 1-9.	1.3	2
172	Mineralogy and Weathering of Realgar-Rich Tailings At a Former As-Sb-Cr Mine At Lojane, North Macedonia. Canadian Mineralogist, 2019, , 1-21.	0.3	2
173	Comparing the Influence of Two Different Natural Organic Matter Types on Colloid Deposition in Saturated Porous Medium. Advanced Materials Research, 0, 455-456, 1324-1329.	0.3	1
174	A critical evaluation of short columns for estimating the attachment efficiency of engineered nanomaterials in natural soils. Environmental Science: Nano, 2021, 8, 1801-1814.	2.2	1
175	The German Water Chemical Society: Actual Trends and Fields of Research in the Principle Committee "Basic Researchâ€Presenting the principle committee "Basic Researchâ€of the German Water Chemical Society — Division of the German Chemical Society Clean - Soil, Air, Water, 2001, 29, 419.	0.8	0
176	Themenheft: Hydrogeologie in Österreich. Grundwasser, 2010, 15, 3-4.	1.4	0
177	Alkylphenolic Compounds in the Danube River. Handbook of Environmental Chemistry, 2014, , 197-215.	0.2	0
178	Application of laser-induced breakdown-detection as a sensitive detector for UF membrane surrogate challenge tests. Water Science and Technology: Water Supply, 2015, 15, 377-383.	1.0	0
179	Hydrogeologie und Wasserchemie – So nah und doch so fern. Grundwasser, 2015, 20, 161-161.	1.4	0
180	Foreword to the research front on â€~Plastics in the Environment'. Environmental Chemistry, 2021, 18, 91.	0.7	0

#	Article	IF	CITATIONS
181	Beispiele für Nutzen und Risiko der Nanotechnologie aus der Sicht der Umweltgeowissenschaften — Was Wir Wissen und was Wir Lernen Müssen. , 2007, , 83-100.		0
182	Mikro―und Nanoplastik haben nur einen unwesentlichen Einfluss auf den vertikalen Stofftransport organischer Schadstoffe in landwirtschaftlichen Böden. Vom Wasser, 2022, 120, 31-33.	0.1	0