Yuki Morono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1882307/publications.pdf

Version: 2024-02-01

117625 106344 5,132 111 34 65 citations h-index g-index papers 118 118 118 4812 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 2008, 454, 991-994.	27.8	583
2	Isolation of an archaeon at the prokaryote–eukaryote interface. Nature, 2020, 577, 519-525.	27.8	449
3	Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 2015, 349, 420-424.	12.6	376
4	Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nature Geoscience, 2015, 8, 299-304.	12.9	226
5	Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18295-18300.	7.1	205
6	Global diversity of microbial communities in marine sediment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27587-27597.	7.1	174
7	Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME Journal, 2009, 3, 503-511.	9.8	140
8	An improved cell separation technique for marine subsurface sediments: applications for highâ€throughput analysis using flow cytometry and cell sorting. Environmental Microbiology, 2013, 15, 2841-2849.	3.8	119
9	Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME Journal, 2011, 5, 1913-1925.	9.8	108
10	Sedimentary membrane lipids recycled by deep-sea benthic archaea. Nature Geoscience, 2010, 3, 858-861.	12.9	103
11	Dehalogenation Activities and Distribution of Reductive Dehalogenase Homologous Genes in Marine Subsurface Sediments. Applied and Environmental Microbiology, 2009, 75, 6905-6909.	3.1	95
12	Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9206-E9215.	7.1	94
13	Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles, 2008, 12, 519-527.	2.3	93
14	Acetogenesis in Deep Subseafloor Sediments of The Juan de Fuca Ridge Flank: A Synthesis of Geochemical, Thermodynamic, and Gene-based Evidence. Geomicrobiology Journal, 2010, 27, 183-211.	2.0	89
15	A Modified SDS-Based DNA Extraction Method for High Quality Environmental DNA from Seafloor Environments. Frontiers in Microbiology, 2016, 07, 986.	3.5	80
16	Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex. Science Advances, 2018, 4, eaao4631.	10.3	79
17	Microbial Diversity in Sediments from the Bottom of the Challenger Deep, the Mariana Trench. Microbes and Environments, 2018, 33, 186-194.	1.6	75
18	Bioturbation as a key driver behind the dominance of Bacteria over Archaea in near-surface sediment. Scientific Reports, 2017, 7, 2400.	3.3	73

#	Article	IF	CITATIONS
19	Endospore abundance and d:l-amino acid modeling of bacterial turnover in holocene marine sediment (Aarhus Bay). Geochimica Et Cosmochimica Acta, 2012, 99, 87-99.	3.9	72
20	Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nature Communications, 2020, 11, 3626.	12.8	72
21	Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science, 2020, 370, 1230-1234.	12.6	65
22	Microbial dormancy in the marine subsurface: Global endospore abundance and response to burial. Science Advances, 2019, 5, eaav1024.	10.3	64
23	Niche Separation of Methanotrophic Archaea (ANME-1 and -2) in Methane-Seep Sediments of the Eastern Japan Sea Offshore Joetsu. Geomicrobiology Journal, 2011, 28, 118-129.	2.0	61
24	High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes. Frontiers in Microbiology, 2014, 5, 80.	3.5	61
25	Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition) Tj ETQq $1\ 1$	0.784314 1.4	rgBT Overlo
26	Atribacteria from the Subseafloor Sedimentary Biosphere Disperse to the Hydrosphere through Submarine Mud Volcanoes. Frontiers in Microbiology, 2017, 8, 1135.	3.5	55
27	Persistent organic matter in oxic subseafloor sediment. Nature Geoscience, 2019, 12, 126-131.	12.9	53
28	Microbiological Assessment of Circulation Mud Fluids During the First Operation of Riser Drilling by the Deep-Earth Research Vessel <i>Chikyu </i> . Geomicrobiology Journal, 2008, 25, 274-282.	2.0	51
29	Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes. ISME Journal, 2013, 7, 555-567.	9.8	51
30	Hot-Alkaline DNA Extraction Method for Deep-Subseafloor Archaeal Communities. Applied and Environmental Microbiology, 2014, 80, 1985-1994.	3.1	49
31	Variance and potential niche separation of microbial communities in subseafloor sediments off <scp>S</scp> himokita <scp>P</scp> eninsula, <scp>J</scp> apan. Environmental Microbiology, 2016, 18, 1889-1906.	3.8	48
32	Bacterial dominance in subseafloor sediments characterized by methane hydrates. FEMS Microbiology Ecology, 2012, 81, 88-98.	2.7	46
33	Dense microbial community on a ferromanganese nodule from the ultra-oligotrophic South Pacific Gyre: Implications for biogeochemical cycles. Earth and Planetary Science Letters, 2016, 447, 10-20.	4.4	41
34	Characterization of Metabolically Active Bacterial Populations in Subseafloor Nankai Trough Sediments above, within, and below the Sulfate–Methane Transition Zone. Frontiers in Microbiology, 2012, 3, 113.	3.5	39
35	Origins of lithium in submarine mud volcano fluid in the Nankai accretionary wedge. Earth and Planetary Science Letters, 2015, 414, 144-155.	4.4	37
36	Naturally occurring, microbially induced smectite-to-illite reaction. Geology, 2019, 47, 535-539.	4.4	37

#	Article	IF	Citations
37	Distribution of dehalogenation activity in subseafloor sediments of the Nankai Trough subduction zone. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120249.	4.0	35
38	Application of glutaraldehyde for the staining of esterase-active cells with carboxyfluorescein diacetate. Biotechnology Letters, 2004, 26, 379-383.	2.2	32
39	Addition of Aromatic Substrates Restores Trichloroethylene Degradation Activity in Pseudomonas putida F1. Applied and Environmental Microbiology, 2004, 70, 2830-2835.	3.1	30
40	Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor. Frontiers in Microbiology, 2017, 8, 137.	3.5	30
41	Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust. Communications Biology, 2020, 3, 136.	4.4	29
42	A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiology Letters, 2012, 326, 47-54.	1.8	28
43	Analysis of Low-Biomass MicrobialÂCommunities in theÂDeep Biosphere. Advances in Applied Microbiology, 2016, 95, 149-178.	2.4	28
44	Accessing the Subsurface Biosphere Within Rocks Undergoing Active Lowâ€Temperature Serpentinization in the Samail Ophiolite (Oman Drilling Project). Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006315.	3.0	27
45	Variability of subseafloor viral abundance at the geographically and geologically distinct continental margins. FEMS Microbiology Ecology, 2014, 88, 60-68.	2.7	26
46	Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene-degrading bacteria. Biochemical Engineering Journal, 2006, 31, 173-179.	3.6	25
47	Comparative Study of Subseafloor Microbial Community Structures in Deeply Buried Coral Fossils and Sediment Matrices from the Challenger Mound in the Porcupine Seabight. Frontiers in Microbiology, 2011, 2, 231.	3.5	25
48	Optimization of distinction between viable and dead cells by fluorescent staining method and its application to bacterial consortia. Biochemical Engineering Journal, 2007, 37, 56-61.	3.6	24
49	Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system. Frontiers in Microbiology, 2013, 4, 361.	3.5	24
50	Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea. Frontiers in Microbiology, 2016, 7, 1375.	3.5	24
51	Cell-Specific Thioautotrophic Productivity of Epsilon-Proteobacterial Epibionts Associated with Shinkaia crosnieri. PLoS ONE, 2012, 7, e46282.	2.5	23
52	D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin. Frontiers in Microbiology, 2018, 9, 967.	3.5	23
53	Intact preservation of environmental samples by freezing under an alternating magnetic field. Environmental Microbiology Reports, 2015, 7, 243-251.	2.4	22
54	Significant contribution of subseafloor microparticles to the global manganese budget. Nature Communications, 2019, 10, 400.	12.8	22

#	Article	IF	Citations
55	An Improved Method for Extracting Viruses From Sediment: Detection of Far More Viruses in the Subseafloor Than Previously Reported. Frontiers in Microbiology, 2019, 10, 878.	3.5	21
56	An improved method to identify osmium-stained organic matter within soil aggregate structure by electron microscopy and synchrotron X-ray micro-computed tomography. Soil and Tillage Research, 2019, 191, 275-281.	5.6	21
57	Rapid metabolism fosters microbial survival in the deep, hot subseafloor biosphere. Nature Communications, 2022, 13, 312.	12.8	21
58	Ecophysiology of Zetaproteobacteria Associated with Shallow Hydrothermal Iron-Oxyhydroxide Deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan. Frontiers in Microbiology, 2015, 6, 1554.	3.5	20
59	Cellular content of biomolecules in sub-seafloor microbial communities. Geochimica Et Cosmochimica Acta, 2016, 188, 330-351.	3.9	20
60	Automatic Slide-Loader Fluorescence Microscope for Discriminative Enumeration of Subseafloor Life. Scientific Drilling, 0, 9, 32-36.	0.6	20
61	Cool, alkaline serpentinite formation fluid regime with scarce microbial habitability and possible abiotic synthesis beneath the South Chamorro Seamount. Progress in Earth and Planetary Science, 2018, 5, .	3.0	19
62	Kinetic analyses of trichloroethylene cometabolism by toluene-degrading bacteria harboring a tod homologous gene. Biochemical Engineering Journal, 2005, 26, 59-64.	3.6	18
63	Aerobic and Anaerobic Methanotrophic Communities Associated with Methane Hydrates Exposed on the Seafloor: A High-Pressure Sampling and Stable Isotope-Incubation Experiment. Frontiers in Microbiology, 2017, 8, 2569.	3.5	18
64	Gold-ISH: A nano-size gold particle-based phylogenetic identification compatible with NanoSIMS. Systematic and Applied Microbiology, 2014, 37, 261-266.	2.8	17
65	Cultivable microbial community in 2-km-deep, 20-million-year-old subseafloor coalbeds through ~1000 days anaerobic bioreactor cultivation. Scientific Reports, 2019, 9, 2305.	3.3	17
66	Expedition 357 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	16
67	Assessment of Capacity to Capture DNA Aerosols by Clean Filters for Molecular Biology Experiments. Microbes and Environments, 2018, 33, 222-226.	1.6	14
68	Expedition 385 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	14
69	Microbial Metabolism and Community Dynamics in Hydraulic Fracturing Fluids Recovered From Deep Hydrocarbon-Rich Shale. Frontiers in Microbiology, 2019, 10, 376.	3.5	13
70	Site U1545. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	13
71	An improved sample preparation method for imaging microstructures of fine-grained marine sediment using microfocus X-ray computed tomography and scanning electron microscopy. Limnology and Oceanography: Methods, 2014, 12, 469-483.	2.0	12
72	Geophysical constraints on microbial biomass in subseafloor sediments and coal seams down to 2.5Âkm off Shimokita Peninsula, Japan. Progress in Earth and Planetary Science, 2018, 5, .	3.0	12

#	Article	lF	CITATIONS
73	Origin of Short-Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin. Frontiers in Microbiology, 2019, 10, 1729.	3.5	11
74	High Fluidâ€Pressure Patches Beneath the Décollement: A Potential Source of Slow Earthquakes in the Nankai Trough off Cape Muroto. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021831.	3.4	11
75	Evolution of (Bioâ€)Geochemical Processes and Diagenetic Alteration of Sediments Along the Tectonic Migration of Ocean Floor in the Shikoku Basin off Japan. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009585.	2.5	11
76	Site U1546. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	11
77	Expedition 357 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	11
78	Bio-Archive Core Storage and Subsampling Procedure for Subseafloor Molecular Biological Research. Scientific Drilling, 0, 8, 35-37.	0.6	11
79	A New Method for Quality Control of Geological Cores by X-Ray Computed Tomography: Application in IODP Expedition 370. Frontiers in Earth Science, 2019, 7, .	1.8	10
80	The Limits of Life and the Biosphere in Earth's Interior. Oceanography, 2019, 32, 208-211.	1.0	10
81	Expedition 385 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	10
82	Sites U1547 and U1548. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	9
83	Hot fluids, burial metamorphism and thermal histories in the underthrust sediments at IODP 370 site C0023, Nankai Accretionary Complex. Marine and Petroleum Geology, 2020, 112, 104080.	3.3	8
84	Expedition 370 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	8
85	Site U1549. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	7
86	Biomass, Diversity, and Metabolic Functions of Subseafloor Life. Developments in Marine Geology, 2014, 7, 65-83.	0.4	6
87	Site U1550. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	6
88	Archaeal MutS5 tightly binds to Holliday junction similarly to eukaryotic MutSî ³ . FEBS Journal, 2017, 284, 3470-3483.	4.7	5
89	In-situ mechanical weakness of subducting sediments beneath a plate boundary d \tilde{A} ©collement in the Nankai Trough. Progress in Earth and Planetary Science, 2018, 5, .	3.0	5
90	EDTA-FISH: A Simple and Effective Approach to Reduce Non-specific Adsorption of Probes in Fluorescence <i>in situ</i> Hybridization (FISH) for Environmental Samples. Microbes and Environments, 2020, 35, n/a.	1.6	5

#	Article	IF	Citations
91	Site C0023. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	5
92	Preliminary experiment for cell count using flow cytometry. Proceedings of the Integrated Ocean Drilling Program, 0, , .	1.0	5
93	Site U1552. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	4
94	Expedition 370 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	4
95	Radical Gas-Based DNA Decontamination for Ultra-Sensitive Molecular Experiments. Microbes and Environments, 2012, 27, 512-514.	1.6	3
96	Simple In-liquid Staining of Microbial Cells for Flow Cytometry Quantification of the Microbial Population in Marine Subseafloor Sediments. Microbes and Environments, 2021, 36, n/a.	1.6	3
97	Site U1551. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	3
98	CO ₂ emission and shallow-type methane hydrate decomposition experiment on deep-sea floor. JAMSTEC Report of Research and Development, 2015, 20, 61-71.	0.2	3
99	5. Detecting slow metabolism in the subseafloor: analysis of single cells using NanoSIMS. , 2014, , 101-120.		2
100	Exploration of the deep-subseafloor-biosphere frontiers: Achievements and perspectives. Journal of the Geological Society of Japan, 2018, 124, 77-92.	0.6	2
101	Metal-ion-induced expression of gene fragments from subseafloor micro-organisms in the Kumano forearc basin, Nankai Trough. Journal of Applied Microbiology, 2018, 125, 1396-1407.	3.1	2
102	Crucial Scientific Issues in Earth Science Revealed Only by Mantle Drilling: Understanding the Current State of the Oceanic Plates of a Life-bearing Planet. Journal of Geography (Chigaku Zasshi), 2021, 130, 483-506.	0.3	2
103	Purification of Disc-Shaped Diatoms from the Southern Ocean Sediment by a Cell Sorter to Obtain an Accurate Oxygen Isotope Record. ACS Earth and Space Chemistry, 0, , .	2.7	2
104	Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans. Scientific Drilling, 0, 24, 61-70.	0.6	2
105	Increase in acetate concentrations during sediment sample onboard storage: a caution for pore-water geochemical analyses. Geochemical Journal, 2013, 47, 567-571.	1.0	1
106	Osmium Plasma Coating for Observation of Microfossils, Using Optical and Scanning Electron Microscopes. Paleontological Research, 2016, 20, 296-301.	1.0	1
107	Modelling the Shimokita deep coalbed biosphere over deep geological time: Starvation, stimulation, material balance and population models. Basin Research, 2020, 32, 804-829.	2.7	1
108	Data report: water activity of the deep coal-bearing basin off Shimokita from IODP Expedition 337. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	1

Үикі Моголо

#	Article	IF	CITATIONS
109	"Mark the Gene― a Method for Nondestructive Introduction of Marker Sequences Inside the Gene Frame of Transgenes. Applied and Environmental Microbiology, 2007, 73, 4915-4921.	3.1	O
110	Forging Partnerships with Other Federal Programs: NASA and the National Science Foundation (NSF) through Scientific Ocean Drilling. , $2021, 53, \ldots$		0
111	Construction of Aerobic/Anaerobic-Substrate-Induced Gene Expression Procedure for Exploration of Metagenomes From Subseafloor Sediments. Frontiers in Microbiology, 2021, 12, 726024.	3.5	O