Shreya Goel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1882035/publications.pdf

Version: 2024-02-01

		23567	12272
169	18,337	58	133
papers	citations	h-index	g-index
180	180	180	26247
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Native and Reconstituted Plasma Lipoproteins in Nanomedicine: Physicochemical Determinants of Nanoparticle Structure, Stability, and Metabolism. Methodist DeBakey Cardiovascular Journal, 2021, 12, 146.	1.0	13
2	Surface Engineering and Multimodal Imaging of Multistage Delivery Vectors in Metastatic Breast Cancer. Bio-protocol, 2021, 11, e4030.	0.4	O
3	Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy. Pharmaceutics, 2021, 13, 530.	4.5	3
4	Ultrasmall Porous Silica Nanoparticles with Enhanced Pharmacokinetics for Cancer Theranostics. Nano Letters, 2021, 21, 4692-4699.	9.1	30
5	ImmunoPET of CD38 with a radiolabeled nanobody: promising for clinical translation. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2683-2686.	6.4	3
6	Emerging Lipid-Coated Silica Nanoparticles for Cancer Therapy. Nanotechnology in the Life Sciences, 2021, , 335-361.	0.6	4
7	Early prediction of clinical response to checkpoint inhibitor therapy in human solid tumors through mathematical modeling. ELife, 2021, 10, .	6.0	8
8	Immunotherapeutic Transport Oncophysics: Space, Time, and Immune Activation in Cancer. Trends in Cancer, 2020, 6, 40-48.	7.4	12
9	Moving Beyond the Pillars of Cancer Treatment: Perspectives From Nanotechnology. Frontiers in Chemistry, 2020, 8, 598100.	3.6	24
10	In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets. Nano Research, 2020, 13, 3217-3223.	10.4	17
11	Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. Nanoscale, 2020, 12, 23838-23850.	5.6	38
12	Sequential deconstruction of composite drug transport in metastatic breast cancer. Science Advances, 2020, 6, eaba4498.	10.3	17
13	A modeling platform for the lymphatic system. Journal of Theoretical Biology, 2020, 493, 110193.	1.7	7
14	Molecular targeting of FATP4 transporter for oral delivery of therapeutic peptide. Science Advances, 2020, 6, eaba0145.	10.3	16
15	Imageâ€guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1628.	6.1	24
16	Systematic comparison of methods for determining the in vivo biodistribution of porous nanostructured injectable inorganic particles. Acta Biomaterialia, 2019, 97, 501-512.	8.3	7
17	Sizeâ€Optimized Ultrasmall Porous Silica Nanoparticles Depict Vasculatureâ€Based Differential Targeting in Triple Negative Breast Cancer. Small, 2019, 15, e1903747.	10.0	39
18	Vulnerable Atherosclerotic Plaque Imaging by Smallâ€Molecule Highâ€Affinity Positron Emission Tomography Radiopharmaceutical. Advanced Therapeutics, 2019, 2, 1900005.	3.2	2

#	Article	IF	Citations
19	Tumor Site-Dependent Transport Properties Determine Nanotherapeutics Delivery and Its Efficacy. Translational Oncology, 2019, 12, 1196-1205.	3.7	8
20	Mathematical modeling in cancer nanomedicine: a review. Biomedical Microdevices, 2019, 21, 40.	2.8	122
21	Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomaterialia, 2019, 89, 1-13.	8.3	156
22	Nanotechnology and Immunotherapy in Ovarian Cancer: Tracing New Landscapes. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 636-646.	2.5	24
23	Singleâ€Molecule Force Measurement Guides the Design of Multivalent Ligands with Picomolar Affinity. Angewandte Chemie, 2019, 131, 5326-5330.	2.0	3
24	Innentitelbild: Singleâ€Molecule Force Measurement Guides the Design of Multivalent Ligands with Picomolar Affinity (Angew. Chem. 16/2019). Angewandte Chemie, 2019, 131, 5192-5192.	2.0	0
25	Co-sputtered Antibacterial and Biocompatible Nanocomposite Titania-Zinc Oxide thin films on Si substrates for Dental Implant applications. Materials Technology, 2019, 34, 32-42.	3.0	15
26	Surfactant-Stripped Pheophytin Micelles for Multimodal Tumor Imaging and Photodynamic Therapy. ACS Applied Bio Materials, 2019, 2, 544-554.	4.6	16
27	Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials, 2018, 165, 56-65.	11.4	134
28	Radiolabeled polyoxometalate clusters: Kidney dysfunction evaluation and tumor diagnosis by positron emission tomography imaging. Biomaterials, 2018, 171, 144-152.	11.4	42
29	Reassembly of ⁸⁹ Zrâ€Labeled Cancer Cell Membranes into Multicompartment Membraneâ€Derived Liposomes for PETâ€Trackable Tumorâ€Targeted Theranostics. Advanced Materials, 2018, 30, e1704934.	21.0	86
30	Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy. Advanced Materials, 2018, 30, 1704367.	21.0	165
31	Transport Barriers and Oncophysics in Cancer Treatment. Trends in Cancer, 2018, 4, 277-280.	7.4	38
32	Targeting angiogenesis for radioimmunotherapy with a 177Lu-labeled antibody. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 123-131.	6.4	17
33	Nanomedicine, an emerging therapeutic strategy for oral cancer therapy. Oral Oncology, 2018, 76, 1-7.	1.5	70
34	Organelle Transplantation: Polymer Functionalization of Isolated Mitochondria for Cellular Transplantation and Metabolic Phenotype Alteration (Adv. Sci. 3/2018). Advanced Science, 2018, 5, 1870017.	11.2	0
35	Exogenous Radionanomedicine: Inorganic Nanomaterials. Biological and Medical Physics Series, 2018, , 13-47.	0.4	2
36	A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis. Journal of Materials Chemistry B, 2018, 6, 4756-4764.	5.8	56

#	Article	IF	CITATIONS
37	A Novel DNA Aptamer for Dual Targeting of Polymorphonuclear Myeloid-derived Suppressor Cells and Tumor Cells. Theranostics, 2018, 8, 31-44.	10.0	44
38	Distribution of Glutathione-Stabilized Gold Nanoparticles in Feline Fibrosarcomas and Their Role as a Drug Delivery System for Doxorubicin—Preclinical Studies in a Murine Model. International Journal of Molecular Sciences, 2018, 19, 1021.	4.1	11
39	In Vivo Tumor-Targeted Dual-Modality PET/Optical Imaging with a Yolk/Shell-Structured Silica Nanosystem. Nano-Micro Letters, 2018, 10, 65.	27.0	31
40	General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Research, 2018, 11, 4890-4904.	10.4	28
41	Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for <i>In Vivo</i> Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. Journal of Biomedical Nanotechnology, 2018, 14, 900-909.	1.1	29
42	Chloroquine and nanoparticle drug delivery: A promising combination., 2018, 191, 43-49.		54
43	Taking the vehicle out of drug delivery. Materials Today, 2017, 20, 95-97.	14.2	44
44	Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials, 2017, 125, 81-89.	11.4	128
45	Chelatorâ€Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. Angewandte Chemie, 2017, 129, 2935-2938.	2.0	9
46	Chelatorâ€Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. Angewandte Chemie - International Edition, 2017, 56, 2889-2892.	13.8	65
47	Intrinsic and Stable Conjugation of Thiolated Mesoporous Silica Nanoparticles with Radioarsenic. ACS Applied Materials & Diterfaces, 2017, 9, 6772-6781.	8.0	40
48	Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles. Acta Pharmacologica Sinica, 2017, 38, 907-913.	6.1	47
49	Harnessing the Power of Nanotechnology for Enhanced Radiation Therapy. ACS Nano, 2017, 11, 5233-5237.	14.6	109
50	Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension. International Journal of Pharmaceutics, 2017, 524, 257-267.	5.2	31
51	ImmunoPET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer with a Dual-Labeled Bispecific Antibody Fragment. Molecular Pharmaceutics, 2017, 14, 1646-1655.	4.6	36
52	Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Seminars in Immunology, 2017, 34, 114-122.	5 . 6	29
53	Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38304-38312.	8.0	47
54	Bone-targeting nanoparticle to co-deliver decitabine and arsenic trioxide for effective therapy of myelodysplastic syndrome with low systemic toxicity. Journal of Controlled Release, 2017, 268, 92-101.	9.9	24

#	Article	IF	Citations
55	Contribution of Kupffer cells to liposome accumulation in the liver. Colloids and Surfaces B: Biointerfaces, 2017, 158, 356-362.	5.0	78
56	A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale, 2017, 9, 10906-10918.	5.6	29
57	Intrabilayer ⁶⁴ Cu Labeling of Photoactivatable, Doxorubicin-Loaded Stealth Liposomes. ACS Nano, 2017, 11, 12482-12491.	14.6	62
58	Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging. ACS Nano, 2017, 11, 12193-12201.	14.6	34
59	Nanoparticles administered intrapericardially enhance payload myocardial distribution and retention. Journal of Controlled Release, 2017, 262, 18-27.	9.9	21
60	Gemcitabine enhances the transport of nanovector-albumin-bound paclitaxel in gemcitabine-resistant pancreatic ductal adenocarcinoma. Cancer Letters, 2017, 403, 296-304.	7.2	20
61	Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Advanced Drug Delivery Reviews, 2017, 113, 157-176.	13.7	153
62	Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 181-204.	0.7	37
63	Renalâ€Clearable PEGylated Porphyrin Nanoparticles for Imageâ€Guided Photodynamic Cancer Therapy. Advanced Functional Materials, 2017, 27, 1702928.	14.9	113
64	Auger electron-based targeted radioimmunotherapy with $58\mathrm{mCo}$, a feasibility study. AIP Conference Proceedings, 2016 , , .	0.4	6
65	Theory and Experimental Validation of a Spatio-temporal Model of Chemotherapy Transport to Enhance Tumor Cell Kill. PLoS Computational Biology, 2016, 12, e1004969.	3.2	55
66	A pyruvate decarboxylase-mediated therapeutic strategy for mimicking yeast metabolism in cancer cells. Pharmacological Research, 2016, 111, 413-421.	7.1	7
67	Alterations of the Plasma Peptidome Profiling in Colorectal Cancer Progression. Journal of Cellular Physiology, 2016, 231, 915-925.	4.1	15
68	Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles. Small, 2016, 12, 2775-2782.	10.0	66
69	Long circulating reduced graphene oxide–iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale, 2016, 8, 12683-12692.	5.6	58
70	Facile Preparation of Multifunctional WS ₂ /WO <i>_x</i> Chelator-Free ⁸⁹ Zr-Labeling and In Vivo PET Imaging. Small, 2016, 12, 5750-5758.	10.0	31
71	Engineering Intrinsically Zirconiumâ€89 Radiolabeled Selfâ€Destructing Mesoporous Silica Nanostructures for In Vivo Biodistribution and Tumor Targeting Studies. Advanced Science, 2016, 3, 1600122.	11.2	70
72	Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection. ACS Omega, 2016, 1, 448-455.	3.5	36

#	Article	IF	Citations
73	Multimodal Imaging: Surfactantâ€Stripped Frozen Pheophytin Micelles for Multimodal Gut Imaging (Adv.) Tj ETQo	1 ¹ 2 ¹ .8.784	1314 rgBT /
74	Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles. ACS Applied Materials & Silica Nanoparticles. ACS Applied Materials & Silica Nanoparticles.	8.0	136
75	Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles. ACS Nano, 2016, 10, 7721-7730.	14.6	88
76	Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacological Research, 2016, 113, 92-99.	7.1	47
77	Surfactantâ€Stripped Frozen Pheophytin Micelles for Multimodal Gut Imaging. Advanced Materials, 2016, 28, 8524-8530.	21.0	67
78	Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis. Stem Cells Translational Medicine, 2016, 5, 670-682.	3.3	76
79	Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts. Journal of Tissue Engineering, 2016, 7, 204173141666119.	5.5	18
80	Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions. Nanoscale, 2016, 8, 12544-12552.	5.6	49
81	An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nature Biotechnology, 2016, 34, 414-418.	17.5	248
82	Nanotechnology for mesenchymal stem cell therapies. Journal of Controlled Release, 2016, 240, 242-250.	9.9	29
83	Cancer theranostics with 64Cu/177Lu-loaded liposomes. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 938-940.	6.4	9
84	Redirecting Transport of Nanoparticle Albumin-Bound Paclitaxel to Macrophages Enhances Therapeutic Efficacy against Liver Metastases. Cancer Research, 2016, 76, 429-439.	0.9	54
85	Intrinsically Zr-labeled GdOS:Eu nanophosphors with high stability for dual-modality imaging. American Journal of Translational Research (discontinued), 2016, 8, 5591-5600.	0.0	4
86	Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging. Scientific Reports, 2015, 5, 16930.	3.3	52
87	Porous Silicon Microparticles for Delivery of siRNA Therapeutics. Journal of Visualized Experiments, 2015, , 52075.	0.3	27
88	Porous Silicon Microparticle Potentiates Anti-Tumor Immunity by Enhancing Cross-Presentation and Inducing Type I Interferon Response. Cell Reports, 2015, 11, 957-966.	6.4	90
89	Iron Oxide Decorated MoS ₂ Nanosheets with Double PEGylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy. ACS Nano, 2015, 9, 950-960.	14.6	460
90	<i>In Vivo</i> Integrity and Biological Fate of Chelator-Free Zirconium-89-Labeled Mesoporous Silica Nanoparticles. ACS Nano, 2015, 9, 7950-7959.	14.6	135

#	Article	IF	CITATIONS
91	Multistage vector (MSV) therapeutics. Journal of Controlled Release, 2015, 219, 406-415.	9.9	52
92	Circulating Peptidome to Indicate the Tumor-resident Proteolysis. Scientific Reports, 2015, 5, 9327.	3.3	12
93	PET Imaging of Abdominal Aortic Aneurysm with ⁶⁴ Cu-Labeled Anti-CD105 Antibody Fab Fragment. Journal of Nuclear Medicine, 2015, 56, 927-932.	5.0	35
94	Highlights from the latest articles in nanomedicine for deep tumor imaging and phototherapy. Nanomedicine, 2015, 10, 1681-1683.	3.3	0
95	<i>In Vivo</i> Tumor Vasculature Targeting of CuS@MSN Based Theranostic Nanomedicine. ACS Nano, 2015, 9, 3926-3934.	14.6	155
96	Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine, 2015, 10, 1233-1246.	3.3	80
97	Highlights from the latest articles in nano-oncology. Nanomedicine, 2015, 10, 897-898.	3.3	1
98	Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. Journal of Controlled Release, 2015, 217, 293-299.	9.9	29
99	Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 2015, 33, 941-951.	17.5	4,868
100	Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale, 2015, 7, 19438-19447.	5.6	78
101	VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide inÂvivo. Biomaterials, 2015, 39, 39-46.	11.4	72
102	Human Equilibrative Nucleoside Transporter-1 Knockdown Tunes Cellular Mechanics through Epithelial-Mesenchymal Transition in Pancreatic Cancer Cells. PLoS ONE, 2014, 9, e107973.	2.5	14
103	Cellular communication via nanoparticle-transporting biovesicles. Nanomedicine, 2014, 9, 581-592.	3.3	10
104	Matching the Decay Half-Life with the Biological Half-Life: ImmunoPET Imaging with ⁴⁴ Sc-Labeled Cetuximab Fab Fragment. Bioconjugate Chemistry, 2014, 25, 2197-2204.	3.6	74
105	Molecular Imaging: Intrinsically Radiolabeled Nanoparticles: An Emerging Paradigm (Small 19/2014). Small, 2014, 10, 3824-3824.	10.0	1
106	Chemotherapy: Polymer Nanoparticles Encased in a Cyclodextrin Complex Shell for Potential Site―and Sequence‧pecific Drug Release (Adv. Funct. Mater. 30/2014). Advanced Functional Materials, 2014, 24, 4868-4868.	14.9	0
107	Magnetic Nanoparticles: Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation (Adv. Funct. Mater. 29/2014). Advanced Functional Materials, 2014, 24, 4562-4562.	14.9	0
108	Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics. Small, 2014, 10, 631-645.	10.0	380

#	Article	IF	Citations
109	Emerging nanotherapeutic strategies in breast cancer. Breast, 2014, 23, 10-18.	2.2	37
110	Bone marrow endothelium-targeted therapeutics for metastatic breast cancer. Journal of Controlled Release, 2014, 187, 22-29.	9.9	47
111	Nanopore film based enrichment and quantification of low abundance hepcidin from human bodily fluids. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e879-e888.	3.3	16
112	XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature, 2014, 508, 103-107.	27.8	663
113	Point-of-care technologies for molecular diagnostics using a drop of blood. Trends in Biotechnology, 2014, 32, 132-139.	9.3	192
114	Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation. Advanced Functional Materials, 2014, 24, 4584-4594.	14.9	50
115	Capillary-Wall Collagen as a Biophysical Marker of Nanotherapeutic Permeability into the Tumor Microenvironment. Cancer Research, 2014, 74, 4239-4246.	0.9	7 5
116	The nano-plasma interface: Implications of the protein corona. Colloids and Surfaces B: Biointerfaces, 2014, 124, 17-24.	5.0	155
117	Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids and Surfaces B: Biointerfaces, 2014, 114, 294-300.	5.0	96
118	VEGF < sub > 121 < /sub > -Conjugated Mesoporous Silica Nanoparticle: A Tumor Targeted Drug Delivery System. ACS Applied Materials & Delivery System. ACS Applie	8.0	118
119	Saturation–pressure relationships for two- and three-phase flow analogies for soft matter. Mechanics Research Communications, 2014, 62, 132-137.	1.8	19
120	Intrinsically Radiolabeled Nanoparticles: An Emerging Paradigm. Small, 2014, 10, 3825-3830.	10.0	106
121	Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer. Cancer Letters, 2014, 352, 97-101.	7.2	31
122	In Vivo Tumor Vasculature Targeted PET/NIRF Imaging with TRC105(Fab)-Conjugated, Dual-Labeled Mesoporous Silica Nanoparticles. Molecular Pharmaceutics, 2014, 11, 4007-4014.	4.6	90
123	Polymer Nanoparticles Encased in a Cyclodextrin Complex Shell for Potential Site―and Sequence‧pecific Drug Release. Advanced Functional Materials, 2014, 24, 4753-4761.	14.9	36
124	Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1487-1496.	3.3	58
125	USNCTAM perspectives on mechanics in medicine. Journal of the Royal Society Interface, 2014, 11, 20140301.	3.4	35
126	Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials, 2014, 35, 7101-7109.	11.4	88

#	Article	IF	Citations
127	Transport properties of pancreatic cancer describe gemcitabine delivery and response. Journal of Clinical Investigation, 2014, 124, 1525-1536.	8.2	164
128	Nanobody: The "Magic Bullet―for Molecular Imaging?. Theranostics, 2014, 4, 386-398.	10.0	219
129	Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents. Scientific Reports, 2014, 4, 4502.	3.3	29
130	Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy. Scientific Reports, 2014, 4, 5080.	3.3	176
131	Transient Mild Hyperthermia Induces E-selectin Mediated Localization of Mesoporous Silicon Vectors in Solid Tumors. PLoS ONE, 2014, 9, e86489.	2.5	13
132	Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. , 2013, , .		0
133	Scaling and crossovers in molecular transport in nano-fluidic systems. Applied Physics Letters, 2013, 103, .	3.3	8
134	Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. , 2013, , .		1
135	Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. , 2013, , .		2
136	Bacteriophage associated silicon particles: design and characterization of a novel theranostic vector with improved payload carrying potential. Journal of Materials Chemistry B, 2013, 1, 5218.	5.8	20
137	Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotechnology, 2013, 8, 61-68.	31.5	925
138	Mesoporous Silicon: Short and Long Term, In Vitro and In Vivo Correlations of Cellular and Tissue Responses to Mesoporous Silicon Nanovectors (Small 9-10/2013). Small, 2013, 9, 1721-1721.	10.0	0
139	Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. , 2013, , .		0
140	High Capacity Nanoporous Silicon Carrier for Systemic Delivery of Gene Silencing Therapeutics. ACS Nano, 2013, 7, 9867-9880.	14.6	110
141	Drug Delivery: Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice (Adv. Funct. Mater. 20/2012). Advanced Functional Materials, 2012, 22, 4186-4186.	14.9	6
142	Properties and Applications of Electrically Small Folded Ellipsoidal Helix Antenna. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 678-681.	4.0	13
143	<i>In Vivo</i> Targeting and Imaging of Tumor Vasculature with Radiolabeled, Antibody-Conjugated Nanographene. ACS Nano, 2012, 6, 2361-2370.	14.6	318
144	Multifunctional to multistage delivery systems: The evolution of nanoparticles for biomedical applications. Science Bulletin, 2012, 57, 3961-3971.	1.7	45

#	Article	IF	Citations
145	Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice. Advanced Functional Materials, 2012, 22, 4225-4235.	14.9	170
146	Cancer Therapy: Cooperative, Nanoparticleâ€Enabled Thermal Therapy of Breast Cancer (Adv. Healthcare) Tj ETQ	q0,0,0 rgE 7.6	BT Overlock
147	The preferential targeting of the diseased microvasculature by disk-like particles. Biomaterials, 2012, 33, 5504-5513.	11.4	140
148	Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. Journal of Controlled Release, 2012, 158, 148-155.	9.9	177
149	Mesoporous Siliconâ€PLGA Composite Microspheres for the Double Controlled Release of Biomolecules for Orthopedic Tissue Engineering. Advanced Functional Materials, 2012, 22, 282-293.	14.9	86
150	Novel Multistage Nanoparticle Drug Delivery to Ablate Leukemia Stem Cells in Their Niche Blood, 2012, 120, 2631-2631.	1.4	7
151	ImmunoPET and near-infrared fluorescence imaging of CD105 expression using a monoclonal antibody dual-labeled with (89)Zr and IRDye 800CW. American Journal of Translational Research (discontinued), 2012, 4, 333-46.	0.0	38
152	A multifunctional nanostructured platform for localized sustained release of analgesics and antibiotics. European Journal of Pain Supplements, 2011, 5, 423-432.	0.0	10
153	Nanomedicine: Ushering in a new era of pain management. European Journal of Pain Supplements, 2011, 5, 317-322.	0.0	27
154	Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles. Molecular Imaging, 2011, 10, 7290.2011.00008.	1.4	20
155	Near-Infrared Imaging Method for the In Vivo Assessment of the Biodistribution of Nanoporous Silicon Particles. Molecular Imaging, 2011, 10, 7290.2011.00011.	1.4	50
156	Multi-Composite Bioactive Osteogenic Sponges Featuring Mesenchymal Stem Cells, Platelet-Rich Plasma, Nanoporous Silicon Enclosures, and Peptide Amphiphiles for Rapid Bone Regeneration. Journal of Functional Biomaterials, 2011, 2, 39-66.	4.4	36
157	What does physics have to do with cancer?. Nature Reviews Cancer, 2011, 11, 657-670.	28.4	168
158	Dissipative particle dynamics simulation of circular and elliptical particles motion in 2D laminar shear flow. Microfluidics and Nanofluidics, 2011, 10, 1127-1134.	2.2	11
159	Site-Specific Drug Delivery: E-Selectin-Targeted Porous Silicon Particle for Nanoparticle Delivery to the Bone Marrow (Adv. Mater. 36/2011). Advanced Materials, 2011, 23, H284-H284.	21.0	0
160	Molecular Imaging with Nucleic Acid Aptamers. Current Medicinal Chemistry, 2011, 18, 4195-4205.	2.4	87
161	Proteomic analysis of serum opsonins impacting biodistribution and cellular association of porous silicon microparticles. Molecular Imaging, 2011, 10, 43-55.	1.4	9
162	Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends in Biotechnology, 2010, 28, 181-188.	9.3	270

SHREYA GOEL

#	Article	IF	CITATION
163	Nanomedicineâ€"Challenge and Perspectives. Angewandte Chemie - International Edition, 2009, 48, 872-897.	13.8	1,111
164	Design of bio-mimetic particles with enhanced vascular interaction. Journal of Biomechanics, 2009, 42, 1885-1890.	2.1	92
165	Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology, 2009, 20, 495101.	2.6	217
166	The Transport of Nanoparticles in Blood Vessels: The Effect of Vessel Permeability and Blood Rheology. Annals of Biomedical Engineering, 2008, 36, 254-261.	2.5	150
167	Seven challenges for nanomedicine. Nature Nanotechnology, 2008, 3, 242-244.	31.5	479
168	Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotechnology, 2008, 3, 151-157.	31.5	637
169	Reply to "Comment on Osmotic Pressure beyond Concentration Restrictions'― Journal of Physical Chemistry B, 2008, 112, 15943-15943.	2.6	1