List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1882035/publications.pdf Version: 2024-02-01

SHREVA COEL

#	Article	IF	CITATIONS
1	Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 2015, 33, 941-951.	17.5	4,868
2	Nanomedicine—Challenge and Perspectives. Angewandte Chemie - International Edition, 2009, 48, 872-897.	13.8	1,111
3	Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotechnology, 2013, 8, 61-68.	31.5	925
4	XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature, 2014, 508, 103-107.	27.8	663
5	Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotechnology, 2008, 3, 151-157.	31.5	637
6	Seven challenges for nanomedicine. Nature Nanotechnology, 2008, 3, 242-244.	31.5	479
7	Iron Oxide Decorated MoS ₂ Nanosheets with Double PEGylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy. ACS Nano, 2015, 9, 950-960.	14.6	460
8	Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics. Small, 2014, 10, 631-645.	10.0	380
9	<i>In Vivo</i> Targeting and Imaging of Tumor Vasculature with Radiolabeled, Antibody-Conjugated Nanographene. ACS Nano, 2012, 6, 2361-2370.	14.6	318
10	Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends in Biotechnology, 2010, 28, 181-188.	9.3	270
11	An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nature Biotechnology, 2016, 34, 414-418.	17.5	248
12	Nanobody: The "Magic Bullet―for Molecular Imaging?. Theranostics, 2014, 4, 386-398.	10.0	219
13	Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology, 2009, 20, 495101.	2.6	217
14	Point-of-care technologies for molecular diagnostics using a drop of blood. Trends in Biotechnology, 2014, 32, 132-139.	9.3	192
15	Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. Journal of Controlled Release, 2012, 158, 148-155.	9.9	177
16	Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy. Scientific Reports, 2014, 4, 5080.	3.3	176
17	Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice. Advanced Functional Materials, 2012, 22, 4225-4235.	14.9	170
18	What does physics have to do with cancer?. Nature Reviews Cancer, 2011, 11, 657-670.	28.4	168

#	Article	IF	CITATIONS
19	Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy. Advanced Materials, 2018, 30, 1704367.	21.0	165
20	Transport properties of pancreatic cancer describe gemcitabine delivery and response. Journal of Clinical Investigation, 2014, 124, 1525-1536.	8.2	164
21	Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomaterialia, 2019, 89, 1-13.	8.3	156
22	The nano-plasma interface: Implications of the protein corona. Colloids and Surfaces B: Biointerfaces, 2014, 124, 17-24.	5.0	155
23	<i>In Vivo</i> Tumor Vasculature Targeting of CuS@MSN Based Theranostic Nanomedicine. ACS Nano, 2015, 9, 3926-3934.	14.6	155
24	Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Advanced Drug Delivery Reviews, 2017, 113, 157-176.	13.7	153
25	The Transport of Nanoparticles in Blood Vessels: The Effect of Vessel Permeability and Blood Rheology. Annals of Biomedical Engineering, 2008, 36, 254-261.	2.5	150
26	The preferential targeting of the diseased microvasculature by disk-like particles. Biomaterials, 2012, 33, 5504-5513.	11.4	140
27	Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 26630-26637.	8.0	136
28	<i>In Vivo</i> Integrity and Biological Fate of Chelator-Free Zirconium-89-Labeled Mesoporous Silica Nanoparticles. ACS Nano, 2015, 9, 7950-7959.	14.6	135
29	Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials, 2018, 165, 56-65.	11.4	134
30	Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials, 2017, 125, 81-89.	11.4	128
31	Mathematical modeling in cancer nanomedicine: a review. Biomedical Microdevices, 2019, 21, 40.	2.8	122
32	VEGF ₁₂₁ -Conjugated Mesoporous Silica Nanoparticle: A Tumor Targeted Drug Delivery System. ACS Applied Materials & Interfaces, 2014, 6, 21677-21685.	8.0	118
33	Renal learable PEGylated Porphyrin Nanoparticles for Imageâ€Guided Photodynamic Cancer Therapy. Advanced Functional Materials, 2017, 27, 1702928.	14.9	113
34	High Capacity Nanoporous Silicon Carrier for Systemic Delivery of Gene Silencing Therapeutics. ACS Nano, 2013, 7, 9867-9880.	14.6	110
35	Harnessing the Power of Nanotechnology for Enhanced Radiation Therapy. ACS Nano, 2017, 11, 5233-5237.	14.6	109
36	Intrinsically Radiolabeled Nanoparticles: An Emerging Paradigm. Small, 2014, 10, 3825-3830.	10.0	106

#	Article	IF	CITATIONS
37	Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids and Surfaces B: Biointerfaces, 2014, 114, 294-300.	5.0	96
38	Design of bio-mimetic particles with enhanced vascular interaction. Journal of Biomechanics, 2009, 42, 1885-1890.	2.1	92
39	In Vivo Tumor Vasculature Targeted PET/NIRF Imaging with TRC105(Fab)-Conjugated, Dual-Labeled Mesoporous Silica Nanoparticles. Molecular Pharmaceutics, 2014, 11, 4007-4014.	4.6	90
40	Porous Silicon Microparticle Potentiates Anti-Tumor Immunity by Enhancing Cross-Presentation and Inducing Type I Interferon Response. Cell Reports, 2015, 11, 957-966.	6.4	90
41	Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials, 2014, 35, 7101-7109.	11.4	88
42	Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles. ACS Nano, 2016, 10, 7721-7730.	14.6	88
43	Molecular Imaging with Nucleic Acid Aptamers. Current Medicinal Chemistry, 2011, 18, 4195-4205.	2.4	87
44	Mesoporous Siliconâ€PLGA Composite Microspheres for the Double Controlled Release of Biomolecules for Orthopedic Tissue Engineering. Advanced Functional Materials, 2012, 22, 282-293.	14.9	86
45	Reassembly of ⁸⁹ Zr‣abeled Cancer Cell Membranes into Multicompartment Membraneâ€Derived Liposomes for PETâ€Trackable Tumorâ€Targeted Theranostics. Advanced Materials, 2018, 30, e1704934.	21.0	86
46	Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine, 2015, 10, 1233-1246.	3.3	80
47	Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale, 2015, 7, 19438-19447.	5.6	78
48	Contribution of Kupffer cells to liposome accumulation in the liver. Colloids and Surfaces B: Biointerfaces, 2017, 158, 356-362.	5.0	78
49	Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis. Stem Cells Translational Medicine, 2016, 5, 670-682.	3.3	76
50	Capillary-Wall Collagen as a Biophysical Marker of Nanotherapeutic Permeability into the Tumor Microenvironment. Cancer Research, 2014, 74, 4239-4246.	0.9	75
51	Matching the Decay Half-Life with the Biological Half-Life: ImmunoPET Imaging with ⁴⁴ Sc-Labeled Cetuximab Fab Fragment. Bioconjugate Chemistry, 2014, 25, 2197-2204.	3.6	74
52	VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide inÂvivo. Biomaterials, 2015, 39, 39-46.	11.4	72
53	Engineering Intrinsically Zirconiumâ€89 Radiolabeled Selfâ€Destructing Mesoporous Silica Nanostructures for In Vivo Biodistribution and Tumor Targeting Studies. Advanced Science, 2016, 3, 1600122.	11.2	70
54	Nanomedicine, an emerging therapeutic strategy for oral cancer therapy. Oral Oncology, 2018, 76, 1-7.	1.5	70

#	Article	IF	CITATIONS
55	Surfactantâ€5tripped Frozen Pheophytin Micelles for Multimodal Gut Imaging. Advanced Materials, 2016, 28, 8524-8530.	21.0	67
56	Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles. Small, 2016, 12, 2775-2782.	10.0	66
57	Chelatorâ€Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. Angewandte Chemie - International Edition, 2017, 56, 2889-2892.	13.8	65
58	Intrabilayer ⁶⁴ Cu Labeling of Photoactivatable, Doxorubicin-Loaded Stealth Liposomes. ACS Nano, 2017, 11, 12482-12491.	14.6	62
59	Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1487-1496.	3.3	58
60	Long circulating reduced graphene oxide–iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale, 2016, 8, 12683-12692.	5.6	58
61	A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis. Journal of Materials Chemistry B, 2018, 6, 4756-4764.	5.8	56
62	Theory and Experimental Validation of a Spatio-temporal Model of Chemotherapy Transport to Enhance Tumor Cell Kill. PLoS Computational Biology, 2016, 12, e1004969.	3.2	55
63	Redirecting Transport of Nanoparticle Albumin-Bound Paclitaxel to Macrophages Enhances Therapeutic Efficacy against Liver Metastases. Cancer Research, 2016, 76, 429-439.	0.9	54
64	Chloroquine and nanoparticle drug delivery: A promising combination. , 2018, 191, 43-49.		54
65	Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging. Scientific Reports, 2015, 5, 16930.	3.3	52
66	Multistage vector (MSV) therapeutics. Journal of Controlled Release, 2015, 219, 406-415.	9.9	52
67	Near-Infrared Imaging Method for the In Vivo Assessment of the Biodistribution of Nanoporous Silicon Particles. Molecular Imaging, 2011, 10, 7290.2011.00011.	1.4	50
68	Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation. Advanced Functional Materials, 2014, 24, 4584-4594.	14.9	50
69	Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions. Nanoscale, 2016, 8, 12544-12552.	5.6	49
70	Bone marrow endothelium-targeted therapeutics for metastatic breast cancer. Journal of Controlled Release, 2014, 187, 22-29.	9.9	47
71	Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacological Research, 2016, 113, 92-99.	7.1	47
72	Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles. Acta Pharmacologica Sinica, 2017, 38, 907-913.	6.1	47

#	Article	IF	CITATIONS
73	Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2017, 9, 38304-38312.	8.0	47
74	Multifunctional to multistage delivery systems: The evolution of nanoparticles for biomedical applications. Science Bulletin, 2012, 57, 3961-3971.	1.7	45
75	Taking the vehicle out of drug delivery. Materials Today, 2017, 20, 95-97.	14.2	44
76	A Novel DNA Aptamer for Dual Targeting of Polymorphonuclear Myeloid-derived Suppressor Cells and Tumor Cells. Theranostics, 2018, 8, 31-44.	10.0	44
77	Radiolabeled polyoxometalate clusters: Kidney dysfunction evaluation and tumor diagnosis by positron emission tomography imaging. Biomaterials, 2018, 171, 144-152.	11.4	42
78	Intrinsic and Stable Conjugation of Thiolated Mesoporous Silica Nanoparticles with Radioarsenic. ACS Applied Materials & Interfaces, 2017, 9, 6772-6781.	8.0	40
79	Sizeâ€Optimized Ultrasmall Porous Silica Nanoparticles Depict Vasculatureâ€Based Differential Targeting in Triple Negative Breast Cancer. Small, 2019, 15, e1903747.	10.0	39
80	Transport Barriers and Oncophysics in Cancer Treatment. Trends in Cancer, 2018, 4, 277-280.	7.4	38
81	Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. Nanoscale, 2020, 12, 23838-23850.	5.6	38
82	ImmunoPET and near-infrared fluorescence imaging of CD105 expression using a monoclonal antibody dual-labeled with (89)Zr and IRDye 800CW. American Journal of Translational Research (discontinued), 2012, 4, 333-46.	0.0	38
83	Emerging nanotherapeutic strategies in breast cancer. Breast, 2014, 23, 10-18.	2.2	37
84	Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 181-204.	0.7	37
85	Multi-Composite Bioactive Osteogenic Sponges Featuring Mesenchymal Stem Cells, Platelet-Rich Plasma, Nanoporous Silicon Enclosures, and Peptide Amphiphiles for Rapid Bone Regeneration. Journal of Functional Biomaterials, 2011, 2, 39-66.	4.4	36
86	Polymer Nanoparticles Encased in a Cyclodextrin Complex Shell for Potential Site―and Sequence‧pecific Drug Release. Advanced Functional Materials, 2014, 24, 4753-4761.	14.9	36
87	Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection. ACS Omega, 2016, 1, 448-455.	3.5	36
88	ImmunoPET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer with a Dual-Labeled Bispecific Antibody Fragment. Molecular Pharmaceutics, 2017, 14, 1646-1655.	4.6	36
89	USNCTAM perspectives on mechanics in medicine. Journal of the Royal Society Interface, 2014, 11, 20140301.	3.4	35
90	PET Imaging of Abdominal Aortic Aneurysm with ⁶⁴ Cu-Labeled Anti-CD105 Antibody Fab Fragment. Journal of Nuclear Medicine, 2015, 56, 927-932.	5.0	35

#	Article	IF	CITATIONS
91	Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging. ACS Nano, 2017, 11, 12193-12201.	14.6	34
92	Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer. Cancer Letters, 2014, 352, 97-101.	7.2	31
93	Facile Preparation of Multifunctional WS ₂ /WO <i>_x</i> Nanodots for Chelator-Free ⁸⁹ Zr-Labeling and In Vivo PET Imaging. Small, 2016, 12, 5750-5758.	10.0	31
94	Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension. International Journal of Pharmaceutics, 2017, 524, 257-267.	5.2	31
95	In Vivo Tumor-Targeted Dual-Modality PET/Optical Imaging with a Yolk/Shell-Structured Silica Nanosystem. Nano-Micro Letters, 2018, 10, 65.	27.0	31
96	Ultrasmall Porous Silica Nanoparticles with Enhanced Pharmacokinetics for Cancer Theranostics. Nano Letters, 2021, 21, 4692-4699.	9.1	30
97	Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents. Scientific Reports, 2014, 4, 4502.	3.3	29
98	Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. Journal of Controlled Release, 2015, 217, 293-299.	9.9	29
99	Nanotechnology for mesenchymal stem cell therapies. Journal of Controlled Release, 2016, 240, 242-250.	9.9	29
100	Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Seminars in Immunology, 2017, 34, 114-122.	5.6	29
101	A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale, 2017, 9, 10906-10918.	5.6	29
102	Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for <i>In Vivo</i> Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. Journal of Biomedical Nanotechnology, 2018, 14, 900-909.	1.1	29
103	General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Research, 2018, 11, 4890-4904.	10.4	28
104	Nanomedicine: Ushering in a new era of pain management. European Journal of Pain Supplements, 2011, 5, 317-322.	0.0	27
105	Porous Silicon Microparticles for Delivery of siRNA Therapeutics. Journal of Visualized Experiments, 2015, , 52075.	0.3	27
106	Bone-targeting nanoparticle to co-deliver decitabine and arsenic trioxide for effective therapy of myelodysplastic syndrome with low systemic toxicity. Journal of Controlled Release, 2017, 268, 92-101.	9.9	24
107	Nanotechnology and Immunotherapy in Ovarian Cancer: Tracing New Landscapes. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 636-646.	2.5	24
108	Moving Beyond the Pillars of Cancer Treatment: Perspectives From Nanotechnology. Frontiers in Chemistry, 2020, 8, 598100.	3.6	24

#	Article	IF	CITATIONS
109	Imageâ€guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1628.	6.1	24
110	Nanoparticles administered intrapericardially enhance payload myocardial distribution and retention. Journal of Controlled Release, 2017, 262, 18-27.	9.9	21
111	Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles. Molecular Imaging, 2011, 10, 7290.2011.00008.	1.4	20
112	Bacteriophage associated silicon particles: design and characterization of a novel theranostic vector with improved payload carrying potential. Journal of Materials Chemistry B, 2013, 1, 5218.	5.8	20
113	Gemcitabine enhances the transport of nanovector-albumin-bound paclitaxel in gemcitabine-resistant pancreatic ductal adenocarcinoma. Cancer Letters, 2017, 403, 296-304.	7.2	20
114	Saturation–pressure relationships for two- and three-phase flow analogies for soft matter. Mechanics Research Communications, 2014, 62, 132-137.	1.8	19
115	Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts. Journal of Tissue Engineering, 2016, 7, 204173141666119.	5.5	18
116	Targeting angiogenesis for radioimmunotherapy with a 177Lu-labeled antibody. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 123-131.	6.4	17
117	In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets. Nano Research, 2020, 13, 3217-3223.	10.4	17
118	Sequential deconstruction of composite drug transport in metastatic breast cancer. Science Advances, 2020, 6, eaba4498.	10.3	17
119	Nanopore film based enrichment and quantification of low abundance hepcidin from human bodily fluids. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e879-e888.	3.3	16
120	Surfactant-Stripped Pheophytin Micelles for Multimodal Tumor Imaging and Photodynamic Therapy. ACS Applied Bio Materials, 2019, 2, 544-554.	4.6	16
121	Molecular targeting of FATP4 transporter for oral delivery of therapeutic peptide. Science Advances, 2020, 6, eaba0145.	10.3	16
122	Alterations of the Plasma Peptidome Profiling in Colorectal Cancer Progression. Journal of Cellular Physiology, 2016, 231, 915-925.	4.1	15
123	Co-sputtered Antibacterial and Biocompatible Nanocomposite Titania-Zinc Oxide thin films on Si substrates for Dental Implant applications. Materials Technology, 2019, 34, 32-42.	3.0	15
124	Human Equilibrative Nucleoside Transporter-1 Knockdown Tunes Cellular Mechanics through Epithelial-Mesenchymal Transition in Pancreatic Cancer Cells. PLoS ONE, 2014, 9, e107973.	2.5	14
125	Properties and Applications of Electrically Small Folded Ellipsoidal Helix Antenna. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 678-681.	4.0	13
126	Native and Reconstituted Plasma Lipoproteins in Nanomedicine: Physicochemical Determinants of Nanoparticle Structure, Stability, and Metabolism. Methodist DeBakey Cardiovascular Journal, 2021, 12, 146.	1.0	13

#	Article	IF	CITATIONS
127	Transient Mild Hyperthermia Induces E-selectin Mediated Localization of Mesoporous Silicon Vectors in Solid Tumors. PLoS ONE, 2014, 9, e86489.	2.5	13
128	Circulating Peptidome to Indicate the Tumor-resident Proteolysis. Scientific Reports, 2015, 5, 9327.	3.3	12
129	Immunotherapeutic Transport Oncophysics: Space, Time, and Immune Activation in Cancer. Trends in Cancer, 2020, 6, 40-48.	7.4	12
130	Dissipative particle dynamics simulation of circular and elliptical particles motion in 2D laminar shear flow. Microfluidics and Nanofluidics, 2011, 10, 1127-1134.	2.2	11
131	Distribution of Glutathione-Stabilized Gold Nanoparticles in Feline Fibrosarcomas and Their Role as a Drug Delivery System for Doxorubicin—Preclinical Studies in a Murine Model. International Journal of Molecular Sciences, 2018, 19, 1021.	4.1	11
132	A multifunctional nanostructured platform for localized sustained release of analgesics and antibiotics. European Journal of Pain Supplements, 2011, 5, 423-432.	0.0	10
133	Cellular communication via nanoparticle-transporting biovesicles. Nanomedicine, 2014, 9, 581-592.	3.3	10
134	Cancer theranostics with 64Cu/177Lu-loaded liposomes. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 938-940.	6.4	9
135	Chelatorâ€Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. Angewandte Chemie, 2017, 129, 2935-2938.	2.0	9
136	Proteomic analysis of serum opsonins impacting biodistribution and cellular association of porous silicon microparticles. Molecular Imaging, 2011, 10, 43-55.	1.4	9
137	Scaling and crossovers in molecular transport in nano-fluidic systems. Applied Physics Letters, 2013, 103, .	3.3	8
138	Tumor Site-Dependent Transport Properties Determine Nanotherapeutics Delivery and Its Efficacy. Translational Oncology, 2019, 12, 1196-1205.	3.7	8
139	Early prediction of clinical response to checkpoint inhibitor therapy in human solid tumors through mathematical modeling. ELife, 2021, 10, .	6.0	8
140	A pyruvate decarboxylase-mediated therapeutic strategy for mimicking yeast metabolism in cancer cells. Pharmacological Research, 2016, 111, 413-421.	7.1	7
141	Systematic comparison of methods for determining the in vivo biodistribution of porous nanostructured injectable inorganic particles. Acta Biomaterialia, 2019, 97, 501-512.	8.3	7
142	A modeling platform for the lymphatic system. Journal of Theoretical Biology, 2020, 493, 110193.	1.7	7
143	Novel Multistage Nanoparticle Drug Delivery to Ablate Leukemia Stem Cells in Their Niche Blood, 2012, 120, 2631-2631.	1.4	7
144	Drug Delivery: Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice (Adv. Funct. Mater. 20/2012). Advanced Functional Materials, 2012, 22, 4186-4186.	14.9	6

#	Article	IF	CITATIONS
145	Auger electron-based targeted radioimmunotherapy with 58mCo, a feasibility study. AIP Conference Proceedings, 2016, , .	0.4	6
146	Emerging Lipid-Coated Silica Nanoparticles for Cancer Therapy. Nanotechnology in the Life Sciences, 2021, , 335-361.	0.6	4
147	Intrinsically Zr-labeled GdOS:Eu nanophosphors with high stability for dual-modality imaging. American Journal of Translational Research (discontinued), 2016, 8, 5591-5600.	0.0	4
148	Cancer Therapy: Cooperative, Nanoparticleâ€Enabled Thermal Therapy of Breast Cancer (Adv. Healthcare) Tj ETQ	q0_0_0 rgB 7.6	T ¦Overlock I
149	Singleâ€Molecule Force Measurement Guides the Design of Multivalent Ligands with Picomolar Affinity. Angewandte Chemie, 2019, 131, 5326-5330.	2.0	3
150	Seed- and Soil-Dependent Differences in Murine Breast Tumor Microenvironments Dictate Anti-PD-L1 IgG Delivery and Therapeutic Efficacy. Pharmaceutics, 2021, 13, 530.	4.5	3
151	ImmunoPET of CD38 with a radiolabeled nanobody: promising for clinical translation. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2683-2686.	6.4	3
152	Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. , 2013, , .		2
153	Exogenous Radionanomedicine: Inorganic Nanomaterials. Biological and Medical Physics Series, 2018, , 13-47.	0.4	2
154	Vulnerable Atherosclerotic Plaque Imaging by Smallâ€Molecule Highâ€Affinity Positron Emission Tomography Radiopharmaceutical. Advanced Therapeutics, 2019, 2, 1900005.	3.2	2
155	Reply to "Comment on Osmotic Pressure beyond Concentration Restrictions'― Journal of Physical Chemistry B, 2008, 112, 15943-15943.	2.6	1
156	Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. , 2013, , .		1
157	Molecular Imaging: Intrinsically Radiolabeled Nanoparticles: An Emerging Paradigm (Small 19/2014). Small, 2014, 10, 3824-3824.	10.0	1
158	Highlights from the latest articles in nano-oncology. Nanomedicine, 2015, 10, 897-898.	3.3	1
159	Site-Specific Drug Delivery: E-Selectin-Targeted Porous Silicon Particle for Nanoparticle Delivery to the Bone Marrow (Adv. Mater. 36/2011). Advanced Materials, 2011, 23, H284-H284.	21.0	0
160	Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. , 2013, , .		0
161	Mesoporous Silicon: Short and Long Term, In Vitro and In Vivo Correlations of Cellular and Tissue Responses to Mesoporous Silicon Nanovectors (Small 9-10/2013). Small, 2013, 9, 1721-1721.	10.0	0
162	Dual band electrically small non-uniform pitch ellipsoidal helix antenna for cardiac pacemakers. , 2013, , .		0

#	Article	IF	CITATIONS
163	Chemotherapy: Polymer Nanoparticles Encased in a Cyclodextrin Complex Shell for Potential Site―and Sequenceâ€Specific Drug Release (Adv. Funct. Mater. 30/2014). Advanced Functional Materials, 2014, 24, 4868-4868.	14.9	0
164	Magnetic Nanoparticles: Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation (Adv. Funct. Mater. 29/2014). Advanced Functional Materials, 2014, 24, 4562-4562.	14.9	0
165	Highlights from the latest articles in nanomedicine for deep tumor imaging and phototherapy. Nanomedicine, 2015, 10, 1681-1683.	3.3	0

Multimodal Imaging: Surfactantâ \in 5 tripped Frozen Pheophytin Micelles for Multimodal Gut Imaging (Adv.) Tj ETQq0.0 orgBT (Overlock 1 21.0 °C)

167	Organelle Transplantation: Polymer Functionalization of Isolated Mitochondria for Cellular Transplantation and Metabolic Phenotype Alteration (Adv. Sci. 3/2018). Advanced Science, 2018, 5, 1870017.	11.2	Ο
168	Innentitelbild: Singleâ€Molecule Force Measurement Guides the Design of Multivalent Ligands with Picomolar Affinity (Angew. Chem. 16/2019). Angewandte Chemie, 2019, 131, 5192-5192.	2.0	0
169	Surface Engineering and Multimodal Imaging of Multistage Delivery Vectors in Metastatic Breast Cancer. Bio-protocol, 2021, 11, e4030.	0.4	0