Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1881962/publications.pdf

Version: 2024-02-01

180	8,111	44	84
papers	citations	h-index	g-index
188	188	188	7661 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Breast Tumor Segmentation in DCE-MRI With Tumor Sensitive Synthesis. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 4990-5001.	11.3	8
2	Volumetric Analysis of Amygdala and Hippocampal Subfields for Infants with Autism. Journal of Autism and Developmental Disorders, 2023, 53, 2475-2489.	2.7	8
3	Multi-Task Weakly-Supervised Attention Network for Dementia Status Estimation With Structural MRI. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 4056-4068.	11.3	20
4	A cascaded nested network for 3T brain MR image segmentation guided by 7T labeling. Pattern Recognition, 2022, 124, 108420.	8.1	7
5	Existence of Functional Connectome Fingerprint during Infancy and Its Stability over Months. Journal of Neuroscience, 2022, 42, 377-389.	3.6	17
6	Recurrent Tissue-Aware Network for Deformable Registration of Infant Brain MR Images. IEEE Transactions on Medical Imaging, 2022, 41, 1219-1229.	8.9	11
7	Developmental abnormalities of structural covariance networks of cortical thickness and surface area in autistic infants within the first 2Âyears. Cerebral Cortex, 2022, 32, 3786-3798.	2.9	3
8	Longitudinal brain atlases of early developing cynomolgus macaques from birth to 48 months of age. Neurolmage, 2022, 247, 118799.	4.2	4
9	Path Signature Neural Network of Cortical Features for Prediction of Infant Cognitive Scores. IEEE Transactions on Medical Imaging, 2022, 41, 1665-1676.	8.9	5
10	Alterations in motor functional connectivity in Neonatal Hypoxic Ischemic Encephalopathy. Brain Injury, 2022, 36, 287-294.	1.2	2
11	Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder: Results From the ENIGMA-PGC Posttraumatic Stress Disorder Consortium. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 935-948.	1.5	2
12	A 4D infant brain volumetric atlas based on the UNC/UMN baby connectome project (BCP) cohort. Neurolmage, 2022, 253, 119097.	4.2	13
13	Spherical Transformer for Quality Assessment of Pediatric Cortical Surfaces., 2022, 2022, .		2
14	Neural alterations in opioid-exposed infants revealed by edge-centric brain functional networks. Brain Communications, 2022, 4, .	3.3	4
15	Predicting brain structural network using functional connectivity. Medical Image Analysis, 2022, 79, 102463.	11.6	25
16	Gyral peaks: Novel gyral landmarks in developing macaque brains. Human Brain Mapping, 2022, 43, 4540-4555.	3.6	8
17	Estimating Reference Shape Model for Personalized Surgical Reconstruction of Craniomaxillofacial Defects. IEEE Transactions on Biomedical Engineering, 2021, 68, 362-373.	4.2	10
18	Anatomy-Regularized Representation Learning for Cross-Modality Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2021, 40, 274-285.	8.9	17

#	Article	IF	Citations
19	Reference-Relation Guided Autoencoder with Deep CCA Restriction for Awake-to-Sleep Brain Functional Connectome Prediction. Lecture Notes in Computer Science, 2021, , 231-240.	1.3	2
20	Construction of Longitudinally Consistent 4D Infant Cerebellum Atlases Based onÂDeep Learning. Lecture Notes in Computer Science, 2021, 12904, 139-149.	1.3	2
21	Learning Infant Brain Developmental Connectivity for Cognitive Score Prediction. Lecture Notes in Computer Science, 2021, , 228-237.	1.3	1
22	Patient-Specific Reference Model for Planning Orthognathic Surgery. , 2021, , 105-114.		0
23	Machine Learning for CBCT Segmentation of Craniomaxillofacial Bony Structures. , 2021, , 3-13.		0
24	A Deep Network for Joint Registration and Parcellation of Cortical Surfaces. Lecture Notes in Computer Science, 2021, , 171-181.	1.3	5
25	DIKA-Nets: Domain-invariant knowledge-guided attention networks for brain skull stripping of early developing macaques. Neurolmage, 2021, 227, 117649.	4.2	14
26	Automatic brain extraction from 3D fetal MR image with deep learning-based multi-step framework. Computerized Medical Imaging and Graphics, 2021, 88, 101848.	5.8	6
27	Spherical Deformable U-Net: Application to Cortical Surface Parcellation and Development Prediction. IEEE Transactions on Medical Imaging, 2021, 40, 1217-1228.	8.9	33
28	Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge. IEEE Transactions on Medical Imaging, 2021, 40, 1363-1376.	8.9	53
29	S3Reg: Superfast Spherical Surface Registration Based on Deep Learning. IEEE Transactions on Medical Imaging, 2021, 40, 1964-1976.	8.9	17
30	ABCnet: Adversarial bias correction network for infant brain MR images. Medical Image Analysis, 2021, 72, 102133.	11.6	6
31	Deep Fusion of Brain Structure-Function in Mild Cognitive Impairment. Medical Image Analysis, 2021, 72, 102082.	11.6	37
32	Harmonized neonatal brain MR image segmentation model for cross-site datasets. Biomedical Signal Processing and Control, 2021, 69, 102810.	5.7	6
33	The maturation and cognitive relevance of structural brain network organization from early infancy to childhood. Neurolmage, 2021, 238, 118232.	4.2	14
34	Effects of prenatal opioid exposure on functional networks in infancy. Developmental Cognitive Neuroscience, 2021, 51, 100996.	4.0	18
35	Maternal Obesity during Pregnancy is Associated with Lower Cortical Thickness in the Neonate Brain. American Journal of Neuroradiology, 2021, 42, 2238-2244.	2.4	11
36	Unified framework for early stage status prediction of autism based on infant structural magnetic resonance imaging. Autism Research, 2021, 14, 2512-2523.	3.8	8

#	Article	IF	CITATIONS
37	Surface-based analysis of the developing cerebral cortex. Advances in Magnetic Resonance Technology and Applications, 2021, , 287-307.	0.1	0
38	Segmentation with varying contrasts of pediatric MRI. Advances in Magnetic Resonance Technology and Applications, 2021, 2, 265-286.	0.1	1
39	Influence of Gonadal Steroids on Cortical Surface Area in Infancy. Cerebral Cortex, 2021, , .	2.9	2
40	Cortical Structure and Cognition in Infants and Toddlers. Cerebral Cortex, 2020, 30, 786-800.	2.9	25
41	One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures. IEEE Transactions on Medical Imaging, 2020, 39, 787-796.	8.9	24
42	Mapping hemispheric asymmetries of the macaque cerebral cortex during early brain development. Human Brain Mapping, 2020, 41, 95-106.	3.6	26
43	Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation. Computerized Medical Imaging and Graphics, 2020, 79, 101660.	5.8	76
44	Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization. Medical Image Analysis, 2020, 60, 101621.	11.6	71
45	Opencc – an open Benchmark data set for Corpus Callosum Segmentation and Evaluation. , 2020, , .		3
46	Disentangled-Multimodal Adversarial Autoencoder: Application to Infant Age Prediction With Incomplete Multimodal Neuroimages. IEEE Transactions on Medical Imaging, 2020, 39, 4137-4149.	8.9	27
47	The emergence of a functionally flexible brain during early infancy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23904-23913.	7.1	36
48	Adaptive-Guided-Coupling-Probability Level Set for Retinal Layer Segmentation. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3236-3247.	6.3	4
49	Siamese Verification Framework for Autism Identification During Infancy Using Cortical Path Signature Features., 2020, 2020, .		3
50	Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners. IEEE Transactions on Medical Imaging, 2020, 39, 2440-2450.	8.9	74
51	Individual identification and individual variability analysis based on cortical folding features in developing infant singletons and twins. Human Brain Mapping, 2020, 41, 1985-2003.	3.6	25
52	Infant Cognitive Scores Prediction with Multi-stream Attention-Based Temporal Path Signature Features. Lecture Notes in Computer Science, 2020, 12267, 134-144.	1.3	3
53	A Deep Spatial Context Guided Framework for Infant Brain Subcortical Segmentation. Lecture Notes in Computer Science, 2020, 12267, 646-656.	1.3	3
54	Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprinting. Lecture Notes in Computer Science, 2020, 12267, 72-82.	1.3	3

#	Article	IF	Citations
55	Unsupervised Learning for Spherical Surface Registration. Lecture Notes in Computer Science, 2020, 12436, 373-383.	1.3	2
56	Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation. Lecture Notes in Computer Science, 2020, 12436, 663-673.	1.3	6
57	Gyral Growth Patterns of Macaque Brains Revealed by Scattered Orthogonal Nonnegative Matrix Factorization. Lecture Notes in Computer Science, 2020, , 394-403.	1.3	0
58	Construction of Spatiotemporal Infant Cortical Surface Functional Templates. Lecture Notes in Computer Science, 2020, 12267, 238-248.	1.3	1
59	Exploring folding patterns of infant cerebral cortex based on multi-view curvature features: Methods and applications. NeuroImage, 2019, 185, 575-592.	4.2	25
60	Construction of 4D Neonatal Cortical Surface Atlases Using Wasserstein Distance., 2019, 2019, 995-998.		2
61	Frnet: Flattened Residual Network for Infant MRI Skull Stripping. , 2019, 2019, 999-1002.		15
62	Surface-constrained volumetric registration for the early developing brain. Medical Image Analysis, 2019, 58, 101540.	11.6	11
63	Developmental topography of cortical thickness during infancy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15855-15860.	7.1	82
64	Cortical Foldingprints for Infant Identification. , 2019, 2019, 396-399.		3
65	Charting Development-Based Joint Parcellation Maps Of Human and Macaque Brains During Infancy. , 2019, 2019, 422-425.		0
66	Spherical U-Net For Infant Cortical Surface Parcellation. , 2019, 2019, 1882-1886.		5
67	Spherical U-Net on Cortical Surfaces: Methods and Applications. Lecture Notes in Computer Science, 2019, 11492, 855-866.	1.3	37
68	Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patchâ€based groupâ€wise sparse representation. Human Brain Mapping, 2019, 40, 3860-3880.	3 . 6	31
69	Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation. Frontiers in Neuroinformatics, 2019, 13, 30.	2.5	38
70	Topological correction of infant white matter surfaces using anatomically constrained convolutional neural network. NeuroImage, 2019, 198, 114-124.	4.2	18
71	Super-resolution reconstruction of neonatal brain magnetic resonance images via residual structured sparse representation. Medical Image Analysis, 2019, 55, 76-87.	11.6	18
72	Early-Life Nutrition and Cognitive Development: Imaging Approaches. Nestle Nutrition Institute Workshop Series, 2019, 90, 121-135.	0.1	6

#	Article	IF	CITATIONS
73	Benchmark on Automatic Six-Month-Old Infant Brain Segmentation Algorithms: The iSeg-2017 Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 2219-2230.	8.9	136
74	STRAINet: Spatially Varying sTochastic Residual Adversarlal Networks for MRI Pelvic Organ Segmentation. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 1552-1564.	11.3	45
75	Computational neuroanatomy of baby brains: A review. Neurolmage, 2019, 185, 906-925.	4.2	125
76	The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development. Neurolmage, 2019, 185, 891-905.	4.2	234
77	3-D Fully Convolutional Networks for Multimodal Isointense Infant Brain Image Segmentation. IEEE Transactions on Cybernetics, 2019, 49, 1123-1136.	9.5	133
78	Environmental Influences on Infant Cortical Thickness and Surface Area. Cerebral Cortex, 2019, 29, 1139-1149.	2.9	60
79	Longitudinally Guided Super-Resolution of Neonatal Brain Magnetic Resonance Images. IEEE Transactions on Cybernetics, 2019, 49, 662-674.	9.5	28
80	Surface-Volume Consistent Construction of Longitudinal Atlases for the Early Developing Brain. Lecture Notes in Computer Science, 2019, 11765, 815-822.	1.3	4
81	Harmonization of Infant Cortical Thickness Using Surface-to-Surface Cycle-Consistent Adversarial Networks. Lecture Notes in Computer Science, 2019, 11767, 475-483.	1.3	39
82	Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties. Lecture Notes in Computer Science, 2019, 11765, 841-849.	1.3	2
83	CNS: CycleGAN-Assisted Neonatal Segmentation Model for Cross-Datasets. Lecture Notes in Computer Science, 2019, , 172-179.	1.3	0
84	Anatomyâ€guided joint tissue segmentation and topological correction for 6â€month infant brain MRI with risk of autism. Human Brain Mapping, 2018, 39, 2609-2623.	3.6	20
85	Medical Image Synthesis with Deep Convolutional Adversarial Networks. IEEE Transactions on Biomedical Engineering, 2018, 65, 2720-2730.	4.2	392
86	Discovering cortical sulcal folding patterns in neonates using largeâ€scale dataset. Human Brain Mapping, 2018, 39, 3625-3635.	3.6	18
87	Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy Planning. IEEE Transactions on Image Processing, 2018, 27, 923-937.	9.8	55
88	Registration-Free Infant Cortical Surface Parcellation Using Deep Convolutional Neural Networks. Lecture Notes in Computer Science, 2018, 11072, 672-680.	1.3	21
89	Topological Correction of Infant Cortical Surfaces Using Anatomically Constrained U-Net. Lecture Notes in Computer Science, 2018, , 125-133.	1.3	3
90	A computational method for longitudinal mapping of orientation-specific expansion of cortical surface area in infants., 2018, 2018, 683-686.		2

#	Article	IF	CITATIONS
91	Construction of spatiotemporal infant cortical surface atlas of rhesus macaque., 2018, 2018, 704-707.		10
92	Construction of spatiotemporal neonatal cortical surface atlases using a large-scale dataset., 2018, 2018, 1056-1059.		7
93	A computational method for longitudinal mapping of orientation-specific expansion of cortical surface in infants. Medical Image Analysis, 2018, 49, 46-59.	11.6	3
94	Genetic influences on neonatal cortical thickness and surface area. Human Brain Mapping, 2018, 39, 4998-5013.	3.6	43
95	Automatic Accurate Infant Cerebellar Tissue Segmentation with Densely Connected Convolutional Network. Lecture Notes in Computer Science, 2018, 11046, 233-240.	1.3	3
96	Structural and Maturational Covariance in Early Childhood Brain Development. Cerebral Cortex, 2017, 27, bhw022.	2.9	111
97	Segmentation of Craniomaxillofacial Bony Structures from MRI with a 3D Deep-Learning Based Cascade Framework. Lecture Notes in Computer Science, 2017, 10541, 266-273.	1.3	20
98	Learningâ€based deformable registration for infant <scp>MRI</scp> by integrating random forest with autoâ€context model. Medical Physics, 2017, 44, 6289-6303.	3.0	16
99	Exploring Gyral Patterns of Infant Cortical Folding Based on Multi-view Curvature Information. Lecture Notes in Computer Science, 2017, 10433, 12-20.	1.3	5
100	Scalable joint segmentation and registration framework for infant brain images. Neurocomputing, 2017, 229, 54-62.	5.9	19
101	LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images. Lecture Notes in Computer Science, 2017, 2017, 26-34.	1.3	1
102	4D Infant Cortical Surface Atlas Construction Using Spherical Patch-Based Sparse Representation. Lecture Notes in Computer Science, 2017, 10433, 57-65.	1.3	15
103	Developmental Patterns Based Individualized Parcellation of Infant Cortical Surface. Lecture Notes in Computer Science, 2017, 10433, 66-74.	1.3	1
104	Cerebellum Tissue Segmentation with Ensemble Sparse Learning. Proceedings of the International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition., 2017, 25, .	0.5	1
105	Cortical thickness and surface area in neonates at high risk for schizophrenia. Brain Structure and Function, 2016, 221, 447-461.	2.3	52
106	Consistent Spatial-Temporal Longitudinal Atlas Construction for Developing Infant Brains. IEEE Transactions on Medical Imaging, 2016, 35, 2568-2577.	8.9	33
107	Fully convolutional networks for multi-modality isointense infant brain image segmentation. , 2016, 2016, 1342-1345.		175
108	Learningâ€based 3T brain MRI segmentation with guidance from 7T MRI labeling. Medical Physics, 2016, 43, 6588-6597.	3.0	6

#	Article	IF	Citations
109	Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory. Scientific Reports, 2016, 6, 37666.	3.3	7
110	Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks. Lecture Notes in Computer Science, 2016, 2016, 170-178.	1.3	151
111	Learning-Based 3T Brain MRI Segmentation with Guidance from 7T MRI Labeling. Lecture Notes in Computer Science, 2016, 10019, 213-220.	1.3	3
112	In vivo MRI based prostate cancer localization with random forests and auto-context model. Computerized Medical Imaging and Graphics, 2016, 52, 44-57.	5.8	16
113	Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model and Multiscale Statistical Features. IEEE Transactions on Biomedical Engineering, 2016, 63, 1820-1829.	4.2	47
114	Estimating CT Image From MRI Data Using Structured Random Forest and Auto-Context Model. IEEE Transactions on Medical Imaging, 2016, 35, 174-183.	8.9	205
115	Automated Segmentation of CBCT Image with Prior-Guided Sequential Random Forest. Lecture Notes in Computer Science, 2016, , 72-82.	1.3	4
116	Learning-Based Topological Correction for Infant Cortical Surfaces. Lecture Notes in Computer Science, 2016, 9900, 219-227.	1.3	16
117	Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset. Lecture Notes in Computer Science, 2016, 9900, 10-18.	1.3	7
118	Hierarchical and symmetric infant image registration by robust longitudinalâ€exampleâ€guided correspondence detection. Medical Physics, 2015, 42, 4174-4189.	3.0	10
119	Automated segmentation of dental CBCT image with prior-guided sequential random forests. Medical Physics, 2015, 43, 336-346.	3.0	58
120	Estimating patientâ€specific and anatomically correct reference model for craniomaxillofacial deformity via sparse representation. Medical Physics, 2015, 42, 5809-5816.	3.0	19
121	Construction of 4D high-definition cortical surface atlases of infants: Methods and applications. Medical Image Analysis, 2015, 25, 22-36.	11.6	112
122	LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. NeuroImage, 2015, 108, 160-172.	4.2	208
123	Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neurolmage, 2015, 108, 214-224.	4.2	662
124	Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood. Cerebral Cortex, 2015, 25, 2204-2212.	2.9	286
125	Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model. Lecture Notes in Computer Science, 2015, , 661-668.	1.3	1
126	Craniomaxillofacial Deformity Correction via Sparse Representation in Coherent Space. Lecture Notes in Computer Science, 2015, , 69-76.	1.3	5

#	Article	IF	CITATIONS
127	LRTV: MR Image Super-Resolution With Low-Rank and Total Variation Regularizations. IEEE Transactions on Medical Imaging, 2015, 34, 2459-2466.	8.9	214
128	Parcellation of Infant Surface Atlas Using Developmental Trajectories of Multidimensional Cortical Attributes. Lecture Notes in Computer Science, 2015, 9351, 543-550.	1.3	4
129	Soft-Split Random Forest for Anatomy Labeling. Lecture Notes in Computer Science, 2015, 9352, 17-25.	1.3	1
130	Longitudinal Guided Super-Resolution Reconstruction of Neonatal Brain MR Images. Lecture Notes in Computer Science, 2015, 8682, 67-76.	1.3	5
131	Isointense Infant Brain Segmentation by Stacked Kernel Canonical Correlation Analysis. Lecture Notes in Computer Science, 2015, 9467, 28-36.	1.3	1
132	Hierarchical Multi-modal Image Registration by Learning Common Feature Representations. Lecture Notes in Computer Science, 2015, 9352, 203-211.	1.3	0
133	miR-24 Regulates Intrinsic Apoptosis Pathway in Mouse Cardiomyocytes. PLoS ONE, 2014, 9, e85389.	2.5	25
134	Mapping Longitudinal Hemispheric Structural Asymmetries of the Human Cerebral Cortex From Birth to 2 Years of Age. Cerebral Cortex, 2014, 24, 1289-1300.	2.9	121
135	Automated bone segmentation from dental CBCT images using patchâ€based sparse representation and convex optimization. Medical Physics, 2014, 41, 043503.	3.0	64
136	Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life. Human Brain Mapping, 2014, 35, 3726-3737.	3.6	51
137	Neonatal atlas construction using sparse representation. Human Brain Mapping, 2014, 35, 4663-4677.	3.6	34
138	Deep Learning Based Imaging Data Completion for Improved Brain Disease Diagnosis. Lecture Notes in Computer Science, 2014, 17, 305-312.	1.3	249
139	Mapping Longitudinal Development of Local Cortical Gyrification in Infants from Birth to 2 Years of Age. Journal of Neuroscience, 2014, 34, 4228-4238.	3.6	203
140	Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. NeuroImage, 2014, 90, 266-279.	4.2	113
141	Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage, 2014, 84, 141-158.	4.2	161
142	Diagnosis of autism spectrum disorders using regional and interregional morphological features. Human Brain Mapping, 2014, 35, 3414-3430.	3.6	77
143	Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants. Medical Image Analysis, 2014, 18, 1274-1289.	11.6	34
144	Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. NeuroImage, 2014, 89, 152-164.	4.2	96

#	Article	IF	CITATIONS
145	Constructing 4D Infant Cortical Surface Atlases Based on Dynamic Developmental Trajectories of the Cortex. Lecture Notes in Computer Science, 2014, 17, 89-96.	1.3	14
146	Estimating Anatomically-Correct Reference Model for Craniomaxillofacial Deformity via Sparse Representation. Lecture Notes in Computer Science, 2014, 17, 73-80.	1.3	4
147	Sparsity-Learning-Based Longitudinal MR Image Registration for Early Brain Development. Lecture Notes in Computer Science, 2014, , 1-8.	1.3	3
148	Learning Distance Transform for Boundary Detection and Deformable Segmentation in CT Prostate Images. Lecture Notes in Computer Science, 2014, 8679, 93-100.	1.3	16
149	Joint Segmentation and Registration for Infant Brain Images. Lecture Notes in Computer Science, 2014, , 13-21.	1.3	2
150	Online Discriminative Multi-atlas Learning for Isointense Infant Brain Segmentation. Lecture Notes in Computer Science, 2014, , 297-305.	1.3	2
151	LINKS: Learning-Based Multi-source IntegratioN FrameworK for Segmentation of Infant Brain Images. Lecture Notes in Computer Science, 2014, , 22-33.	1.3	4
152	Longitudinally guided level sets for consistent tissue segmentation of neonates. Human Brain Mapping, 2013, 34, 956-972.	3.6	66
153	iBEAT: A Toolbox for Infant Brain Magnetic Resonance Image Processing. Neuroinformatics, 2013, 11, 211-225.	2.8	75
154	Mapping Region-Specific Longitudinal Cortical Surface Expansion from Birth to 2 Years of Age. Cerebral Cortex, 2013, 23, 2724-2733.	2.9	203
155	Automatic hippocampus segmentation of 7.0Tesla MR images by combining multiple atlases and auto-context models. NeuroImage, 2013, 83, 335-345.	4.2	46
156	Measuring longitudinally dynamic cortex development in infants by reconstruction of consistent cortical surfaces. , 2013, , .		1
157	Patch-driven neonatal brain MRI segmentation with sparse representation and level sets. , 2013, , .		1
158	aBEAT: A Toolbox for Consistent Analysis of Longitudinal Adult Brain MRI. PLoS ONE, 2013, 8, e60344.	2.5	9
159	4D Segmentation of Brain MR Images with Constrained Cortical Thickness Variation. PLoS ONE, 2013, 8, e64207.	2.5	21
160	Automated Segmentation of CBCT Image Using Spiral CT Atlases and Convex Optimization. Lecture Notes in Computer Science, 2013, 16, 251-258.	1.3	17
161	Low-Rank Total Variation for Image Super-Resolution. Lecture Notes in Computer Science, 2013, 16, 155-162.	1.3	20
162	Multi-atlas Based Simultaneous Labeling of Longitudinal Dynamic Cortical Surfaces in Infants. Lecture Notes in Computer Science, 2013, 16, 58-65.	1.3	9

#	Article	IF	Citations
163	Altered Modular Organization of Structural Cortical Networks in Children with Autism. PLoS ONE, 2013, 8, e63131.	2.5	45
164	Integration of Sparse Multi-modality Representation and Geometrical Constraint for Isointense Infant Brain Segmentation. Lecture Notes in Computer Science, 2013, 16, 703-710.	1.3	8
165	A Computational Growth Model for Measuring Dynamic Cortical Development in the First Year of Life. Cerebral Cortex, 2012, 22, 2272-2284.	2.9	49
166	LABEL: Pediatric brain extraction using learning-based meta-algorithm. NeuroImage, 2012, 62, 1975-1986.	4.2	147
167	4D Multi-Modality Tissue Segmentation of Serial Infant Images. PLoS ONE, 2012, 7, e44596.	2.5	67
168	Atlas Construction via Dictionary Learning and Group Sparsity. Lecture Notes in Computer Science, 2012, 15, 247-255.	1.3	4
169	4D Segmentation of Longitudinal Brain MR Images with Consistent Cortical Thickness Measurement. Lecture Notes in Computer Science, 2012, , 63-75.	1.3	3
170	Automatic segmentation of neonatal images using convex optimization and coupled level sets. Neurolmage, 2011, 58, 805-817.	4.2	120
171	Learning-Based Meta-Algorithm for MRI Brain Extraction. Lecture Notes in Computer Science, 2011, 14, 313-321.	1.3	14
172	Accurate and Consistent 4D Segmentation of Serial Infant Brain MR Images. Lecture Notes in Computer Science, 2011, , 93-101.	1.3	5
173	Segmenting Hippocampus from 7.0 Tesla MR Images by Combining Multiple Atlases and Auto-Context Models. Lecture Notes in Computer Science, 2011, , 100-108.	1.3	3
174	Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy. Journal of Neuroscience Methods, 2010, 188, 316-325.	2.5	60
175	Level Set Segmentation Based on Local Gaussian Distribution Fitting. Lecture Notes in Computer Science, 2010, , 293-302.	1.3	6
176	Automatic Segmentation of Neonatal Images Using Convex Optimization and Coupled Level Set Method. Lecture Notes in Computer Science, 2010, , 1-10.	1.3	1
177	Active contours driven by local Gaussian distribution fitting energy. Signal Processing, 2009, 89, 2435-2447.	3.7	463
178	Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Computerized Medical Imaging and Graphics, 2009, 33, 520-531.	5.8	362
179	A robust parametric method for bias field estimation and segmentation of MR images. , 2009, , .		0
180	Brain MR Image Segmentation Using Local and Global Intensity Fitting Active Contours/Surfaces. Lecture Notes in Computer Science, 2008, 11, 384-392.	1.3	16