Qingyi Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/188147/publications.pdf

Version: 2024-02-01

		109321	79698
85	5,822	35	73
papers	citations	h-index	g-index
87	87	87	5580
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452, 991-996.	27.8	964
2	The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.	21.4	472
3	Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L Nature Genetics, 2018, 50, 1565-1573.	21.4	463
4	A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature, 2004, 427, 348-352.	27.8	351
5	Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology, 2013, 14, R41.	9.6	329
6	Sequencing papaya X and Y $\langle \sup \rangle h \langle \sup \rangle$ chromosomes reveals molecular basis of incipient sex chromosome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13710-13715.	7.1	264
7	Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics, 2013, 14, 75.	2.8	222
8	Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics, $2010,11,261.$	2.8	175
9	High-Density Linkage Mapping Revealed Suppression of Recombination at the Sex Determination Locus in Papaya. Genetics, 2004, 166, 419-436.	2.9	132
10	Sex determination in papaya. Seminars in Cell and Developmental Biology, 2007, 18, 401-408.	5.0	124
11	DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Research, 2008, 18, 1938-1943.	5.5	107
12	Genome size variation in three Saccharum species. Euphytica, 2012, 185, 511-519.	1.2	93
13	Cloning of the Papaya Chromoplast-Specific Lycopene $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Cyclase, $\langle i \rangle$ CpCYC-b $\langle i \rangle$, Controlling Fruit Flesh Color Reveals Conserved Microsynteny and a Recombination Hot Spot. Plant Physiology, 2010, 152, 2013-2022.	4.8	90
14	Origin and domestication of papaya Y ^h chromosome. Genome Research, 2015, 25, 524-533.	5 . 5	87
15	A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics, 2009, 10, 371.	2.8	81
16	Low X/Y divergence in four pairs of papaya sexâ€linked genes. Plant Journal, 2008, 53, 124-132.	5.7	78
17	Construction of a Sequence-Tagged High-Density Genetic Map of Papaya for Comparative Structural and Evolutionary Genomics in Brassicales. Genetics, 2007, 177, 2481-2491.	2.9	73
18	Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Molecular Genetics and Genomics, 2007, 278, 177-185.	2.1	73

#	Article	IF	Citations
19	Recent Origin of Dioecious and Gynodioecious Y Chromosomes in Papaya. Tropical Plant Biology, 2008, 1, 49-57.	1.9	62
20	Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Molecular Genetics and Genomics, 2006, 276, 1-12.	2.1	61
21	The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 2019, 51, 1549-1558.	21.4	60
22	Microâ€collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (<i>Coffea</i>). Plant Journal, 2011, 67, 305-317.	5.7	55
23	Comparative Analysis of GC Content Variations in Plant Genomes. Tropical Plant Biology, 2016, 9, 136-149.	1.9	54
24	Rapid divergence and expansion of the X chromosome in papaya. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13716-13721.	7.1	52
25	Structure, phylogeny, allelic haplotypes and expression of sucrose transporter gene families in Saccharum. BMC Genomics, 2016, 17, 88.	2.8	48
26	Development and application of microsatellite markers for genomic analysis of papaya. Tree Genetics and Genomes, 2008, 4, 333-341.	1.6	45
27	Cold Responsive Gene Expression Profiling of Sugarcane and Saccharum spontaneum with Functional Analysis of a Cold Inducible Saccharum Homolog of NOD26-Like Intrinsic Protein to Salt and Water Stress. PLoS ONE, 2015, 10, e0125810.	2.5	44
28	Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis. Genome Biology and Evolution, 2017, 9, 2170-2190.	2.5	43
29	New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biology, 2018, 18, 270.	3.6	42
30	Comprehensively Characterizing the Cytological Features of Saccharum spontaneum by the Development of a Complete Set of Chromosome-Specific Oligo Probes. Frontiers in Plant Science, 2018, 9, 1624.	3.6	42
31	Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya. BMC Genomics, 2012, 13, 682.	2.8	41
32	Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya. Molecular Breeding, 2012, 29, 457-466.	2.1	40
33	Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics, 2012, 13, 176.	2.8	39
34	Evolution and expression of the fructokinase gene family in Saccharum. BMC Genomics, 2017, 18, 197.	2.8	39
35	Tissue differential expression of lycopene \hat{l}^2 -cyclase gene in papaya. Cell Research, 2006, 16, 731-739.	12.0	37
36	Sequenceâ€ŧagged highâ€density genetic maps of <i>Zoysia japonica</i> provide insights into genome evolution in Chloridoideae. Plant Journal, 2015, 82, 744-757.	5.7	37

#	Article	IF	Citations
37	Molecular Diversity of Ralstonia solanacearum Isolated from Ginger in Hawaii. Phytopathology, 2003, 93, 1124-1130.	2.2	35
38	Genome-Wide Comparative Analyses of Microsatellites in Papaya. Tropical Plant Biology, 2008, 1 , 278-292.	1.9	34
39	Integration of Genetic and Cytological Maps and Development of a Pachytene Chromosome-based Karyotype in Papaya. Tropical Plant Biology, 2010, 3, 166-170.	1.9	34
40	Fruit Development, Ripening and Quality Related Genes in the Papaya Genome. Tropical Plant Biology, 2008, 1, 246-277.	1.9	31
41	Development of male-specific markers and identification of sex reversal mutants in papaya. Euphytica, 2017, 213, 1.	1.2	30
42	Cloning and characterization of a FLORICAULA/LEAFY ortholog, PFL, in polygamous papaya. Cell Research, 2005, 15, 576-584.	12.0	28
43	Enrichment of a papaya high-density genetic map with AFLP markers. Genome, 2009, 52, 716-725.	2.0	28
44	Sex specific expression and distribution of small RNAs in papaya. BMC Genomics, 2014, 15, 20.	2.8	28
45	Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion. BMC Genomics, 2018, 19, 26.	2.8	28
46	Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum. BMC Plant Biology, 2020, 20, 422.	3.6	27
47	SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nature Genetics, 2022, 54, 715-724.	21.4	26
48	Genetic Diversity and Relationships in Native Hawaiian Saccharum officinarum Sugarcane., 2004, 95, 327-331.		25
49	Characterization of Insertion Sites in Rainbow Papaya, the First Commercialized Transgenic Fruit Crop. Tropical Plant Biology, 2008, 1, 293-309.	1.9	25
50	The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea. Plant Journal, 2010, 63, 801-810.	5.7	25
51	PGD: Pineapple Genomics Database. Horticulture Research, 2018, 5, 66.	6.3	25
52	Development of Chromosome-specific Cytogenetic Markers and Merging of Linkage Fragments in Papaya. Tropical Plant Biology, 2010, 3, 171-181.	1.9	24
53	Evidence for Emergence of Sex-Determining Gene(s) in a Centromeric Region in <i>Vasconcellea parviflora</i> . Genetics, 2015, 199, 413-421.	2.9	23
54	Development and Applications of Chromosome-Specific Cytogenetic BAC-FISH Probes in S. spontaneum. Frontiers in Plant Science, 2018, 9, 218.	3.6	23

#	Article	IF	Citations
55	Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum. BMC Genomics, 2019, 20, 83.	2.8	23
56	B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI. Planta, 2008, 227, 741-753.	3.2	22
57	Genome of papaya, a fast growing tropical fruit tree. Tree Genetics and Genomes, 2012, 8, 445-462.	1.6	21
58	Extremely low nucleotide diversity in the X-linked region of papaya caused by a strong selective sweep. Genome Biology, 2016, 17, 230.	8.8	21
59	An integrated cytogenetic and physical map reveals unevenly distributed recombination spots along the papaya sex chromosomes. Chromosome Research, 2012, 20, 753-767.	2.2	20
60	Transcriptome analysis of the male-to-hermaphrodite sex reversal induced by low temperature in papaya. Tree Genetics and Genomes, 2016, 12, 1.	1.6	17
61	Transcriptomic analysis of transgressive segregants revealed the central role of photosynthetic capacity and efficiency in biomass accumulation in sugarcane. Scientific Reports, 2018, 8, 4415.	3.3	17
62	Floral MADS-box Genes in Trioecious Papaya: Characterization of AG and AP1 Subfamily Genes Revealed a Sex-type-specific Gene. Tropical Plant Biology, 2008, 1, 97-107.	1.9	14
63	Genomics of Papaya a Common Source of Vitamins in the Tropics. , 2008, , 405-420.		14
64	Construction of Papaya Male and Female BAC Libraries and Application in Physical Mapping of the Sex Chromosomes. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-7.	3.0	14
65	The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing. Genes, 2021, 12, 381.	2.4	14
66	Construction of high-resolution genetic maps of Zoysia matrella (L.) Merrill and applications to comparative genomic analysis and QTL mapping of resistance to fall armyworm. BMC Genomics, 2016, 17, 562.	2.8	12
67	Chromosome Nomenclature and Cytological Characterization of Sacred Lotus. Cytogenetic and Genome Research, 2017, 153, 223-231.	1.1	12
68	Sex biased expression of hormone related genes at early stage of sex differentiation in papaya flowers. Horticulture Research, 2021, 8, 147.	6.3	12
69	Isolating promoters of multigene family members from the polyploid sugarcane genome by PCR-based walking in BAC DNA. Genome, 2010, 53, 840-847.	2.0	9
70	An Overview of Molecular Advances in Zoysiagrass. Crop Science, 2017, 57, S-73.	1.8	9
71	Comparative Analysis of SUS Gene Family between Saccharum officinarum and Saccharum spontaneum. Tropical Plant Biology, 2019, 12, 174-185.	1.9	9
72	Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum. BMC Genomics, 2016, 17, 446.	2.8	8

#	Article	IF	CITATIONS
7 3	Differential methylation and expression of HUA1 ortholog in three sex types of papaya. Plant Science, 2018, 272, 99-106.	3.6	7
74	Transcriptional regulation of dosage compensation in Carica papaya. Scientific Reports, 2021, 11, 5854.	3.3	5
75	The Effects of Gibberellic Acid on Sex Expression and Secondary Sexual Characteristics in Papaya. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 378-383.	1.0	5
76	Comparative Analysis of Homologous Sequences of Saccharum officinarum and Saccharum spontaneum Reveals Independent Polyploidization Events. Frontiers in Plant Science, 2018, 9, 1414.	3.6	3
77	Nucleotide Composition of the Nelumbo nucifera Genome. Tropical Plant Biology, 2013, 6, 85-97.	1.9	2
78	Papaya Genome and Genomics. , 2012, , 241-259.		2
79	Recent amplification of microsatellite-associated miniature inverted-repeat transposable elements in the pineapple genome. BMC Plant Biology, 2021, 21, 424.	3.6	1
80	Sexual Recombination and Selection During Domestication of Clonally Propagated Pineapple. SSRN Electronic Journal, 0 , , .	0.4	1
81	Transcription Factors in theÂPineapple Genome. Plant Genetics and Genomics: Crops and Models, 2018, , 183-194.	0.3	O
82	Positional cloning and characterization of the papaya diminutive mutant reveal a truncating mutation in the CpMMS19 gene. New Phytologist, 2020, 225, 2006-2021.	7.3	0
83	An Improved Virus-Induced Gene Silencing (VIGS) System in Zoysiagrass. Concepts and Strategies in Plant Sciences, 2021, , 155-168.	0.5	O
84	EFFORTS TO DEREGULATE RAINBOW PAPAYA IN JAPAN: MOLECULAR CHARACTERIZATION OF TRANSGENE AND VECTOR INSERTS. Acta Horticulturae, 2010, , 235-240.	0.2	0
85	Physical Map of Papaya Genome. , 2014, , 169-183.		0