Amandine Everard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1881054/publications.pdf

Version: 2024-02-01

47 papers

13,760 citations

147801 31 h-index 197818 49 g-index

49 all docs 49 docs citations

times ranked

49

14951 citing authors

#	Article	IF	CITATIONS
1	Cross-talk between <i>Akkermansia muciniphila</i> and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9066-9071.	7.1	3,474
2	A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 2017, 23, 107-113.	30.7	1,451
3	<i>Akkermansia muciniphila</i> and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	12.1	1,379
4	Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine, 2019, 25, 1096-1103.	30.7	1,281
5	Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes, 2011, 60, 2775-2786.	0.6	881
6	Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific Reports, 2015, 5, 16643.	3.3	663
7	Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME Journal, 2014, 8, 2116-2130.	9.8	491
8	Diabetes, obesity and gut microbiota. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 73-83.	2.4	472
9	Microbial regulation of organismal energy homeostasis. Nature Metabolism, 2019, 1, 34-46.	11.9	354
10	Endocannabinoids $\hat{a} \in \mathbb{Z}$ at the crossroads between the gut microbiota and host metabolism. Nature Reviews Endocrinology, 2016, 12, 133-143.	9.6	275
11	Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 625-637.	17.8	239
12	Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia, 2015, 58, 2206-2217.	6.3	220
13	<i>Saccharomyces boulardii</i> Administration Changes Gut Microbiota and Reduces Hepatic Steatosis, Low - Grade Inflammation, and Fat Mass in Obese and Type 2 Diabetic <i>db</i> /i> db Mice. MBio, 2014, 5, e01011-14.	4.1	217
14	Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 2014, 5, 5648.	12.8	197
15	Gut microbiota and GLP-1. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 189-196.	5.7	192
16	Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansionÂtoÂincrease satiety. Molecular Metabolism, 2017, 6, 48-60.	6.5	179
17	Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nature Communications, 2015, 6, 6495.	12.8	144
18	Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Molecular Nutrition and Food Research, 2017, 61, 1500899.	3.3	138

#	Article	IF	Citations
19	Pasteurized <i>Akkermansia muciniphila </i> increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 2020, 11, 1231-1245.	9.8	134
20	High-fat diet feeding differentially affects the development of inflammation in the central nervous system. Journal of Neuroinflammation, 2016, 13, 206.	7.2	126
21	Talking microbes: When gut bacteria interact with diet and host organs. Molecular Nutrition and Food Research, 2016, 60, 58-66.	3.3	125
22	Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut, 2017, 66, 620-632.	12.1	125
23	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	3.5	119
24	Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nature Communications, 2019, 10, 457.	12.8	100
25	<i>Dysosmobacter welbionis</i> is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut, 2022, 71, 534-543.	12.1	95
26	Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain, Behavior, and Immunity, 2017, 64, 33-49.	4.1	85
27	<i>Akkermansia muciniphila</i> i> abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E446-E459.	3.5	67
28	Tetrahydro iso-Alpha Acids from Hops Improve Glucose Homeostasis and Reduce Body Weight Gain and Metabolic Endotoxemia in High-Fat Diet-Fed Mice. PLoS ONE, 2012, 7, e33858.	2.5	61
29	Hypoxia Modulates the Differentiation Potential of Stem Cells of the Apical Papilla. Journal of Endodontics, 2014, 40, 1410-1418.	3.1	59
30	Keeping gut lining at bay: impact of emulsifiers. Trends in Endocrinology and Metabolism, 2015, 26, 273-274.	7.1	46
31	Beneficial Effects of Akkermansia muciniphila Are Not Associated with Major Changes in the Circulating Endocannabinoidome but Linked to Higher Mono-Palmitoyl-Glycerol Levels as New PPARα Agonists. Cells, 2021, 10, 185.	4.1	43
32	Gut microbes participate in food preference alterations during obesity. Gut Microbes, 2021, 13, 1959242.	9.8	35
33	Losing weight for a better health: Role for the gut microbiota. Clinical Nutrition Experimental, 2016, 6, 39-58.	2.0	28
34	Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice. Gut, 2021, 70, 1078-1087.	12.1	28
35	Inflammationâ€induced cholestasis in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 70-90.	7.3	24
36	Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes, 2021, 13, 1994270.	9.8	24

#	Article	IF	CITATIONS
37	Laryngopharyngeal reflux: The microbiota theory. Medical Hypotheses, 2021, 146, 110460.	1.5	23
38	Prebiotics Supplementation Impact on the Reinforcing and Motivational Aspect of Feeding. Frontiers in Endocrinology, 2018, 9, 273.	3.5	22
39	Perspective: Leveraging the Gut Microbiota to Predict Personalized Responses to Dietary, Prebiotic, and Probiotic Interventions. Advances in Nutrition, 2022, 13, 1450-1461.	6.4	21
40	Comparison of the effects of soluble corn fiber and fructooligosaccharides on metabolism, inflammation, and gut microbiome of high-fat diet-fed mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E779-E791.	3.5	19
41	Acute environmental hypoxia potentiates satellite cellâ€dependent myogenesis in response to resistance exercise through the inflammation pathway in human. FASEB Journal, 2020, 34, 1885-1900.	0.5	18
42	Hepatic MyD88 regulates liver inflammation by altering synthesis of oxysterols. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E99-E108.	3.5	15
43	Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E647-E657.	3.5	14
44	Linking the Endocannabinoidome with Specific Metabolic Parameters in an Overweight and Insulin-Resistant Population: From Multivariate Exploratory Analysis to Univariate Analysis and Construction of Predictive Models. Cells, 2021, 10, 71.	4.1	6
45	Harnessing Genes and Diet to Fine-Tune the Gut Microbial Fitness. Cell Metabolism, 2015, 22, 754-756.	16.2	5
46	Endurance training alleviates MCP-1 and TERRA accumulation at old age in human skeletal muscle. Experimental Gerontology, 2021, 153, 111510.	2.8	3
47	Akkermansia Muciniphila and Gut Microbiota Richness are Associated with Improved Metabolic Status after Calorie Restriction. FASEB Journal, 2015, 29, 601.3.	0.5	1