Denise J Montell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1880485/publications.pdf Version: 2024-02-01

DENISE I MONTELL

#	Article	IF	CITATIONS
1	Unconventional translation initiation factor <scp>EIF2A</scp> is required for Drosophila spermatogenesis. Developmental Dynamics, 2022, 251, 377-389.	1.8	2
2	Enhanced germline stem cell longevity in Drosophila diapause. Nature Communications, 2022, 13, 711.	12.8	16
3	Border cell polarity and collective migration require the spliceosome component Cactin. Journal of Cell Biology, 2022, 221, .	5.2	2
4	Independently paced Ca2+ oscillations in progenitor and differentiated cells in an <i>ex vivo</i> epithelial organ. Journal of Cell Science, 2022, 135, .	2.0	5
5	Macrophages, masters of invasion. Developmental Cell, 2022, 57, 1314-1315.	7.0	Ο
6	A thermogenetics protocol for detecting gap junction channels in Drosophila egg chambers. STAR Protocols, 2021, 2, 100269.	1.2	0
7	EMT, One of Many Morphological Transitions in Cellular Phase Space. Methods in Molecular Biology, 2021, 2179, 13-18.	0.9	1
8	Integration of Migratory Cells into a New Site InÂVivo Requires Channel-Independent Functions of Innexins on Microtubules. Developmental Cell, 2020, 54, 501-515.e9.	7.0	24
9	Tissue topography steers migrating <i>Drosophila</i> border cells. Science, 2020, 370, 987-990.	12.6	49
10	Akt1 and dCIZ1 promote cell survival from apoptotic caspase activation during regeneration and oncogenic overgrowth. Nature Communications, 2020, 11, 5726.	12.8	28
11	A Cdc42-mediated supracellular network drives polarized forces and Drosophila egg chamber extension. Nature Communications, 2020, 11, 1921.	12.8	13
12	Coordination of protrusion dynamics within and between collectively migrating border cells by myosin II. Molecular Biology of the Cell, 2019, 30, 2490-2502.	2.1	47
13	Cell interactions in collective cell migration. Development (Cambridge), 2019, 146, .	2.5	53
14	TRIMing Neural Connections with Ubiquitin. Developmental Cell, 2019, 48, 5-6.	7.0	11
15	Invite your representative to work. Change the world. Here's how Molecular Biology of the Cell, 2018, 29, 377-379.	2.1	0
16	Rap1 Negatively Regulates the Hippo Pathway to Polarize Directional Protrusions in Collective Cell Migration. Cell Reports, 2018, 22, 2160-2175.	6.4	28
17	Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nature Reviews Cancer, 2018, 18, 296-312.	28.4	380
18	Unconventional Ways to Live and Die: Cell Death and Survival in Development, Homeostasis, and Disease. Annual Review of Cell and Developmental Biology, 2018, 34, 311-332.	9.4	109

Denise J Montell

#	Article	IF	CITATIONS
19	A hormonal cue promotes timely follicle cell migration by modulating transcription profiles. Mechanisms of Development, 2017, 148, 56-68.	1.7	19
20	Development and dynamics of cell polarity at a glance. Journal of Cell Science, 2017, 130, 1201-1207.	2.0	164
21	A molecular signature for anastasis, recovery from the brink of apoptotic cell death. Journal of Cell Biology, 2017, 216, 3355-3368.	5.2	103
22	Quantitative microscopy of the Drosophila ovary shows multiple niche signals specify progenitor cell fate. Nature Communications, 2017, 8, 1244.	12.8	38
23	Q&A: Cellular near death experiences—what is anastasis?. BMC Biology, 2017, 15, 92.	3.8	29
24	Modeling and analysis of collective cell migration in an in vivo three-dimensional environment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2134-41.	7.1	63
25	An Atypical Tropomyosin in Drosophila with Intermediate Filament-like Properties. Cell Reports, 2016, 16, 928-938.	6.4	28
26	Live Imaging of Border Cell Migration in Drosophila. Methods in Molecular Biology, 2016, 1407, 153-168.	0.9	18
27	Tousled-like kinase regulates cytokine-mediated communication between cooperating cell types during collective border cell migration. Molecular Biology of the Cell, 2016, 27, 12-19.	2.1	11
28	CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. ELife, 2016, 5, .	6.0	94
29	Border Cell Migration: A Model System for Live Imaging and Genetic Analysis of Collective Cell Movement. Methods in Molecular Biology, 2015, 1328, 89-97.	0.9	37
30	Diverse and dynamic sources and sinks in gradient formation and directed migration. Current Opinion in Cell Biology, 2014, 30, 91-98.	5.4	27
31	Cellular and Molecular Mechanisms of Single and Collective Cell Migrations in <i>Drosophila</i> : Themes and Variations. Annual Review of Genetics, 2014, 48, 295-318.	7.6	64
32	Mechanical Feedback through E-Cadherin Promotes Direction Sensing during Collective Cell Migration. Cell, 2014, 157, 1146-1159.	28.9	428
33	Mechanochemical regulation of oscillatory follicle cell dynamics in the developing <i>Drosophila</i> egg chamber. Molecular Biology of the Cell, 2014, 25, 3709-3716.	2.1	40
34	Cell and molecular dynamics: visualizing, measuring, and manipulating the chemistry of life. Pflugers Archiv European Journal of Physiology, 2013, 465, 345-346.	2.8	0
35	Rab11 regulates cell–cell communication during collective cell movements. Nature Cell Biology, 2013, 15, 317-324.	10.3	136
36	Castor is required for Hedgehog-dependent cell-fate specification and follicle stem cell maintenance in <i>Drosophila</i> oogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1734-42.	7.1	62

DENISE J MONTELL

#	Article	IF	CITATIONS
37	Stress Induced Mutagenesis, Genetic Diversification, and Cell Survival via Anastasis, the Reversal of Late Stage Apoptosis. , 2013, , 223-241.		1
38	Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Molecular Biology of the Cell, 2012, 23, 2240-2252.	2.1	217
39	A cellular sense of touch. Nature Cell Biology, 2012, 14, 902-903.	10.3	4
40	Group choreography: mechanisms orchestrating the collective movement of border cells. Nature Reviews Molecular Cell Biology, 2012, 13, 631-645.	37.0	208
41	Light activated cell migration in synthetic extracellular matrices. Biomaterials, 2012, 33, 8040-8046.	11.4	26
42	miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nature Cell Biology, 2011, 13, 1062-1069.	10.3	56
43	Shining light on Drosophila oogenesis: live imaging of egg development. Current Opinion in Genetics and Development, 2011, 21, 612-619.	3.3	51
44	Spatiotemporal Control of Small GTPases with Light Using the LOV Domain. Methods in Enzymology, 2011, 497, 393-407.	1.0	49
45	Psidin, a conserved protein that regulates protrusion dynamics and cell migration. Genes and Development, 2011, 25, 730-741.	5.9	34
46	Border Cell Migration: A Model System for Live Imaging and Genetic Analysis of Collective Cell Movement. Methods in Molecular Biology, 2011, 769, 277-286.	0.9	17
47	Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nature Cell Biology, 2010, 12, 591-597.	10.3	297
48	Tissue elongation requires oscillating contractions of a basal actomyosin network. Nature Cell Biology, 2010, 12, 1133-1142.	10.3	233
49	Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nature Cell Biology, 2009, 11, 569-579.	10.3	95
50	Enabled and Capping protein play important roles in shaping cell behavior during Drosophila oogenesis. Developmental Biology, 2009, 333, 90-107.	2.0	60
51	Interpretation of the UPD/JAK/STAT morphogen gradient in Drosophila follicle cells. Cell Cycle, 2009, 8, 2918-2926.	2.6	24
52	Regulation of Cell Adhesion and Collective Cell Migration by Hindsight and Its Human Homolog RREB1. Current Biology, 2008, 18, 532-537.	3.9	91
53	PAR-1 Kinase Regulates Epithelial Detachment and Directional Protrusion of Migrating Border Cells. Current Biology, 2008, 18, 1659-1667.	3.9	60
54	Feedback Inhibition of JAK/STAT Signaling by Apontic Is Required to Limit an Invasive Cell Population. Developmental Cell, 2008, 14, 726-738.	7.0	78

DENISE J MONTELL

#	Article	IF	CITATIONS
55	Morphogenetic Cell Movements: Diversity from Modular Mechanical Properties. Science, 2008, 322, 1502-1505.	12.6	253
56	Spatially localized Kuzbanian required for specific activation of Notch during border cell migration. Developmental Biology, 2007, 301, 532-540.	2.0	40
57	Cellular and Molecular Mechanisms of Border Cell Migration Analyzed Using Time-Lapse Live-Cell Imaging. Developmental Cell, 2007, 12, 997-1005.	7.0	212
58	A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nature Protocols, 2007, 2, 2467-2473.	12.0	162
59	Modeling Migration and Metastasis in Drosophila. Journal of Mammary Gland Biology and Neoplasia, 2007, 12, 103-114.	2.7	44
60	A Kinase Gets Caspases into Shape. Cell, 2006, 126, 450-452.	28.9	7
61	The social lives of migrating cells in Drosophila. Current Opinion in Genetics and Development, 2006, 16, 374-383.	3.3	58
62	Analysis of Cell Migration Using Whole-Genome Expression Profiling of Migratory Cells in the Drosophila Ovary. Developmental Cell, 2006, 10, 483-495.	7.0	125
63	Multiple EGFR ligands participate in guiding migrating border cells. Developmental Biology, 2006, 296, 94-103.	2.0	103
64	Analysis of Cell Migration Using <1>Drosophila 1 as a Model System. , 2005, 294, 175-202.		19
65	Ovarian Cancer Metastasis: Integrating insights from disparate model organisms. Nature Reviews Cancer, 2005, 5, 355-366.	28.4	480
66	Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development (Cambridge), 2005, 132, 3483-3492.	2.5	126
67	Anchors Away! Fos Fosters Anchor-Cell Invasion. Cell, 2005, 121, 816-817.	28.9	9
68	A role for extra macrochaetae downstream of Notch in follicle cell differentiation. Development (Cambridge), 2004, 131, 5971-5980.	2.5	34
69	Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development (Cambridge), 2004, 131, 5243-5251.	2.5	114
70	Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8144-8149.	7.1	141
71	Activated Signal Transducer and Activator of Transcription (STAT) 3. Cancer Research, 2004, 64, 3550-3558.	0.9	239
72	A Role for Drosophila IAP1-Mediated Caspase Inhibition in Rac-Dependent Cell Migration. Cell, 2004, 118, 111-125.	28.9	177

Denise J Montell

#	Article	IF	CITATIONS
73	Genes that drive invasion and migration in Drosophila. Current Opinion in Genetics and Development, 2004, 14, 86-91.	3.3	42
74	Border-cell migration: the race is on. Nature Reviews Molecular Cell Biology, 2003, 4, 13-24.	37.0	302
75	A New Trick for Cyclin-Cdk. Developmental Cell, 2003, 4, 148-149.	7.0	7
76	PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development (Cambridge), 2003, 130, 3469-3478.	2.5	133
77	Eyes Absent, a key repressor of polar cell fate duringDrosophilaoogenesis. Development (Cambridge), 2002, 129, 5377-5388.	2.5	204
78	Myosin VI is required for E-cadherin-mediated border cell migration. Nature Cell Biology, 2002, 4, 616-620.	10.3	207
79	Command and control: regulatory pathways controlling invasive behavior of the border cells. Mechanisms of Development, 2001, 105, 19-25.	1.7	55
80	The Transmembrane Protein Off-Track Associates with Plexins and Functions Downstream of Semaphorin Signaling during Axon Guidance. Neuron, 2001, 32, 53-62.	8.1	153
81	Paracrine Signaling through the JAK/STAT Pathway Activates Invasive Behavior of Ovarian Epithelial Cells in Drosophila. Cell, 2001, 107, 831-841.	28.9	285
82	Regulation of Invasive Cell Behavior by Taiman, a Drosophila Protein Related to AIB1, a Steroid Receptor Coactivator Amplified in Breast Cancer. Cell, 2000, 103, 1047-1058.	28.9	267
83	Developmental regulation of cell migration. Cell Biochemistry and Biophysics, 1999, 31, 219-229.	1.8	14
84	A Drosophila Derailed homolog, Doughnut, expressed in invaginating cells during embryogenesis. Gene, 1999, 231, 155-161.	2.2	17
85	Requirement for the Vasa RNA Helicase ingurkenmRNA Localization. Developmental Biology, 1998, 199, 1-10.	2.0	38
86	Multiple Ras Signals Pattern theDrosophilaOvarian Follicle Cells. Developmental Biology, 1997, 185, 25-33.	2.0	26
87	Moving right along: regulation of cell migration during Drosophila development. Trends in Genetics, 1994, 10, 59-62.	6.7	28
88	slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila CEBP. Cell, 1992, 71, 51-62.	28.9	323
89	Laser ablation studies of the role of the Drosophila oocyte nucleus in pattern formation. Science, 1991, 254, 290-293.	12.6	44
90	Drosophila substrate adhesion molecule: Sequence of laminin B1 chain reveals domains of homology with mouse. Cell, 1988, 53, 463-473.	28.9	157