Yong-Guang Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1880334/publications.pdf Version: 2024-02-01

YONG-GUANG LIA

#	Article	IF	CITATIONS
1	Self-Healing Supramolecular Hydrogel Made of Polymers Bearing Cholic Acid and β-Cyclodextrin Pendants. Chemistry of Materials, 2015, 27, 387-393.	6.7	160
2	Multiple and two-way reversible shape memory polymers: Design strategies and applications. Progress in Materials Science, 2019, 105, 100572.	32.8	129
3	Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomaterialia, 2020, 113, 84-100.	8.3	100
4	Two-Way Reversible Shape Memory Polymers Made of Cross-Linked Cocrystallizable Random Copolymers with Tunable Actuation Temperatures. Macromolecules, 2017, 50, 8570-8579.	4.8	99
5	Progress in self-healing hydrogels assembled by host–guest interactions: preparation and biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1637-1651.	5.8	93
6	TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications. Nanomaterials, 2019, 9, 1049.	4.1	77
7	Self-Healing Hydrogels of Low Molecular Weight Poly(vinyl alcohol) Assembled by Host–Guest Recognition. Biomacromolecules, 2018, 19, 626-632.	5.4	68
8	Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nature Biomedical Engineering, 2021, 5, 1189-1201.	22.5	67
9	Block and Random Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendant Groups: Aggregation, Thermosensitivity, and Drug Loading. Biomacromolecules, 2014, 15, 1837-1844.	5.4	59
10	Supramolecular and dynamic covalent hydrogel scaffolds: from gelation chemistry to enhanced cell retention and cartilage regeneration. Journal of Materials Chemistry B, 2019, 7, 6705-6736.	5.8	59
11	A Study of 3D-Printable Reinforced Composite Resin: PMMA Modified with Silver Nanoparticles Loaded Cellulose Nanocrystal. Materials, 2018, 11, 2444.	2.9	57
12	Fusion peptide engineered "statically-versatile―titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration. Biomaterials, 2021, 264, 120446.	11.4	52
13	Weak Hydrogen Bonds Lead to Self-Healable and Bioadhesive Hybrid Polymeric Hydrogels with Mineralization-Active Functions. Biomacromolecules, 2018, 19, 1939-1949.	5.4	49
14	CO ₂ -Switchable Self-Healing Host–Guest Hydrogels. Macromolecules, 2017, 50, 9696-9701.	4.8	45
15	Biocompound-Based Multiple Shape Memory Polymers Reinforced by Photo-Cross-Linking. ACS Biomaterials Science and Engineering, 2015, 1, 855-863.	5.2	44
16	A Molecular Necklace: Threading β-Cyclodextrins onto Polymers Derived from Bile Acids. Angewandte Chemie - International Edition, 2016, 55, 11979-11983.	13.8	37
17	Quadruple hydrogen bonds and thermo-triggered hydrophobic interactions generate dynamic hydrogels to modulate transplanted cell retention. Biomaterials Science, 2019, 7, 1286-1298.	5.4	36
18	Temperature-Controlled Reversible Exposure and Hiding of Antimicrobial Peptides on an Implant for Killing Bacteria at Room Temperature and Improving Biocompatibility in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 35830-35837.	8.0	34

Yong-Guang Jia

#	Article	IF	CITATIONS
19	Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release. ACS Applied Materials & Interfaces, 2015, 7, 24649-24655.	8.0	32
20	Functionalization of composite bacterial cellulose with C ₆₀ nanoparticles for wound dressing and cancer therapy. RSC Advances, 2018, 8, 18197-18203.	3.6	32
21	Conductive and antimicrobial macroporous nanocomposite hydrogels generated from air-in-water Pickering emulsions for neural stem cell differentiation and skin wound healing. Biomaterials Science, 2020, 8, 6957-6968.	5.4	31
22	AlEâ€Based Theranostic Probe for Sequential Imaging and Killing of Bacteria and Cancer Cells. Advanced Optical Materials, 2020, 8, 1902191.	7.3	31
23	Thermoresponsiveness of Copolymers Bearing Cholic Acid Pendants Induced by Complexation with β-Cyclodextrin. Langmuir, 2014, 30, 11770-11775.	3.5	30
24	"Bitter-Sweet―Polymeric Micelles Formed by Block Copolymers from Glucosamine and Cholic Acid. Biomacromolecules, 2017, 18, 778-786.	5.4	30
25	Engineering topography: Effects on corneal cell behavior and integration into corneal tissue engineering. Bioactive Materials, 2019, 4, 293-302.	15.6	29
26	Glycopolymers Bearing Galactose and Betulin: Synthesis, Encapsulation, and Lectin Recognition. Biomacromolecules, 2017, 18, 3812-3818.	5.4	26
27	Crown Ether Cavity-Containing Copolymers via Controlled Alternating Cyclocopolymerization. Macromolecules, 2011, 44, 6311-6317.	4.8	25
28	Tunable Upper Critical Solution Temperatures for Acrylamide Copolymers with Bile Acid Pendants. Biomacromolecules, 2017, 18, 2663-2668.	5.4	25
29	Collagen–Hydroxypropyl Methylcellulose Membranes for Corneal Regeneration. ACS Omega, 2018, 3, 1269-1275.	3.5	25
30	pH-Responsive Micelles Assembled by Three-Armed Degradable Block Copolymers with a Cholic Acid Core for Drug Controlled-Release. Polymers, 2019, 11, 511.	4.5	25
31	Mechanical and Optical Properties of Reinforced Collagen Membranes for Corneal Regeneration through Polyrotaxane Cross-Linking. ACS Applied Bio Materials, 2019, 2, 3861-3869.	4.6	22
32	An activity-based fluorescent probe and its application for differentiating alkaline phosphatase activity in different cell lines. Chemical Communications, 2020, 56, 13323-13326.	4.1	22
33	Upper critical solution temperature polymeric drug carriers. Chemical Engineering Journal, 2022, 432, 134354.	12.7	21
34	Visualizing phase transition of upper critical solution temperature (UCST) polymers with AIE. Science China Chemistry, 2021, 64, 403-407.	8.2	19
35	Multi-Responsive Properties of a Poly(Ethylene Glycol)-Grafted Alternating Copolymers of Distyrenic Monomer with Maleic Anhydride. Langmuir, 2012, 28, 4500-4506.	3.5	18
36	AND logic gate based fluorescence probe for simultaneous detection of peroxynitrite and hypochlorous acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118073.	3.9	18

YONG-GUANG JIA

#	Article	IF	CITATIONS
37	Preparation of collagen/cellulose nanocrystals composite films and their potential applications in corneal repair. Journal of Materials Science: Materials in Medicine, 2020, 31, 55.	3.6	17
38	Complex thermoresponsive behavior of diblock polyacrylamides. Polymer Chemistry, 2014, 5, 4358-4364.	3.9	16
39	Recent Progress in Bile Acid-Based Antimicrobials. Bioconjugate Chemistry, 2021, 32, 395-410.	3.6	16
40	AIE-Active and Thermoresponsive Alternating Polyurethanes of Bile Acid and PEG for Cell Imaging. ACS Applied Polymer Materials, 2019, 1, 2973-2980.	4.4	13
41	Microgrooved collagen-based corneal scaffold for promoting collective cell migration and antifibrosis. RSC Advances, 2019, 9, 29463-29473.	3.6	12
42	A Molecular Necklace: Threading \hat{l}^2 -Cyclodextrins onto Polymers Derived from Bile Acids. Angewandte Chemie, 2016, 128, 12158-12162.	2.0	10
43	Nano-Carriers Based on pH-Sensitive Star-Shaped Copolymers for Drug-Controlled Release. Materials, 2019, 12, 1610.	2.9	10
44	One-pot quaternization of dual-responsive poly(vinyl alcohol) with AlEgens for pH-switchable imaging and killing of bacteria. Materials Chemistry Frontiers, 2020, 4, 2635-2645.	5.9	10
45	Novel organotinâ€containing shellâ€crossâ€linked knedel and coreâ€crossâ€linked knedel: Synthesis and application in catalysis. Journal of Polymer Science Part A, 2010, 48, 5992-6002.	2.3	9
46	"Biowheel-Axle―Assembly of β-Cyclodextrin Fitted onto Bile Acid Units Linked by PEG Spacers through Inclusion Polymerization. Macromolecules, 2018, 51, 8455-8460.	4.8	9
47	Macroporous Adhesive Nanoâ€Enabled Hydrogels Generated from Airâ€inâ€Water Emulsions. Macromolecular Bioscience, 2022, 22, e2100491.	4.1	9
48	Nanocomposite hydrogels of LAPONITE® mixed with polymers bearing dopamine and cholic acid pendants. RSC Advances, 2016, 6, 23033-23037.	3.6	8
49	Engineering air-in-water emulsion as adaptable multifunctional sealant. Chemical Engineering Journal, 2022, 429, 132200.	12.7	8
50	Novel organotin-containing diblock copolymer with tunable nanostructures: Synthesis, self-assembly and morphological change. Journal of Organometallic Chemistry, 2011, 696, 1416-1424.	1.8	7
51	Soluble–Insoluble–Soluble Transitions of Thermoresponsive Cryptand-Containing Graft Copolymers. ACS Omega, 2018, 3, 10172-10179.	3.5	6
52	α-Cyclodextrins Polyrotaxane Loading Silver Sulfadiazine. Polymers, 2018, 10, 190.	4.5	6
53	Responsive Polypseudorotaxane Hydrogels Triggered by a Compatible Stimulus of CO 2. Macromolecular Chemistry and Physics, 2019, 220, 1900071.	2.2	6
54	Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria. Small, 2022, 18, e2107374.	10.0	6

Yong-Guang Jia

#	Article	IF	CITATIONS
55	Glycopolymers Made from Polyrotaxanes Terminated with Bile Acids: Preparation, Selfâ€Assembly, and Targeting Delivery. Macromolecular Bioscience, 2019, 19, e1800478.	4.1	4
56	Effect of crossâ€linker on morphology, catalytic activity, and recyclability of immobilized palladium chloride. Journal of Applied Polymer Science, 2013, 128, 2604-2610.	2.6	3
57	Polyrotaxane Crosslinked Selfâ€Healing Hydrogels for Switchable Bioadhesion. Macromolecular Chemistry and Physics, 2021, 222, 2000461.	2.2	3
58	Polypseudorotaxanes Derived from Tetraphenylethylene: Preparation and Tandem-Activated Aggregation-Induced Emission. Biomacromolecules, 2021, 22, 2248-2255.	5.4	3
59	α-Amylase lighted aggregation-induced emission luminogens based self-healing hydrogels. Polymer Chemistry, 0, , .	3.9	3
60	Preparation and characterization of novel organic/inorganic hybrid nanoparticles containing an organotin core and a polystyrene shell. Journal of Applied Polymer Science, 2012, 126, 56-65.	2.6	2
61	Multiregulation of Aggregationâ€Induced Emission (AIE) via a Competitive Host–Guest Recognition and <i>α</i> â€Amylase Hydrolyzing. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	2
62	Natural Dualâ€Crosslinked Selfâ€Healing Hydrogels for In Situ Wound Healing. Macromolecular Materials and Engineering, 2022, 307, .	3.6	2
63	Wellâ€defined polymers containing 1,3â€dichloroâ€tetraâ€ <i>n</i> â€butylâ€distannoxane moiety: Synthesis, mechanism, and applications in catalysis. Journal of Applied Polymer Science, 2012, 123, 3485-3494.	2.6	1
64	Controllable polymeric pseudo-crown ether fluorescent sensors: responsiveness and selective detection of metal ions. New Journal of Chemistry, 2021, 45, 2122-2131.	2.8	1
65	Photo-triggered Zn2+ release for the regulation of zinc enzymes. Materials Chemistry Frontiers, 2021, 5, 1824-1829.	5.9	0

66 Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria (Small) Tj ETQq0 0 0 rgBT /Overlock 10 Tf