
Philip M Potter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1879656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of carboxylesterase-1 alters clopidogrel metabolism and disposition. Xenobiotica, 2020, 50, 245-251.	1.1	5
2	Bromodomain-Selective BET Inhibitors Are Potent Antitumor Agents against MYC-Driven Pediatric Cancer. Cancer Research, 2020, 80, 3507-3518.	0.9	28
3	Clinical genome sequencing uncovers potentially targetable truncations and fusions of MAP3K8 in spitzoid and other melanomas. Nature Medicine, 2019, 25, 597-602.	30.7	61
4	Facile synthesis of 1,2-dione-containing abietane analogues for the generation of human carboxylesterase inhibitors. European Journal of Medicinal Chemistry, 2018, 149, 79-89.	5.5	17
5	Exploiting a water network to achieve enthalpy-driven, bromodomain-selective BET inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 25-36.	3.0	23
6	Potent, Irreversible Inhibition of Human Carboxylesterases by Tanshinone Anhydrides Isolated from <i>Salvia miltiorrhiza</i> ("Danshenâ€). Journal of Natural Products, 2018, 81, 2410-2418.	3.0	8
7	Inhibition of SF3B1 by molecules targeting the spliceosome results in massive aberrant exon skipping. Rna, 2018, 24, 1056-1066.	3.5	42
8	Targeting ALK in pediatric RMS does not induce antitumor activity in vivo. Cancer Chemotherapy and Pharmacology, 2018, 82, 251-263.	2.3	9
9	Selective Inhibitors of Human Liver Carboxylesterase Based on a β-Lapachone Scaffold: Novel Reagents for Reaction Profiling. Journal of Medicinal Chemistry, 2017, 60, 1568-1579.	6.4	32
10	Optimization of a Neural Stem-Cell-Mediated Carboxylesterase/Irinotecan Gene Therapy for Metastatic Neuroblastoma. Molecular Therapy - Oncolytics, 2017, 4, 67-76.	4.4	18
11	Challenges and Opportunities with Non-CYP Enzymes Aldehyde Oxidase, Carboxylesterase, and UDP-Glucuronosyltransferase: Focus on Reaction Phenotyping and Prediction of Human Clearance. AAPS Journal, 2016, 18, 1391-1405.	4.4	79
12	Tumourâ€selective targeting of drug metabolizing enzymes to treat metastatic cancer. British Journal of Pharmacology, 2016, 173, 2811-2818.	5.4	5
13	Carboxylesterases: General detoxifying enzymes. Chemico-Biological Interactions, 2016, 259, 327-331.	4.0	115
14	Pharmacodynamic assays to facilitate preclinical and clinical development of pre―mRNA splicing modulatory drug candidates. Pharmacology Research and Perspectives, 2015, 3, e00158.	2.4	12
15	Targeting the DNA Repair Pathway in Ewing Sarcoma. Cell Reports, 2014, 9, 829-840.	6.4	141
16	Sudemycin E influences alternative splicing and changes chromatin modifications. Nucleic Acids Research, 2014, 42, 4947-4961.	14.5	57
17	Abstract 3109: ALK as a valid therapeutic target for the treatment of rhabdomyosarcoma. , 2014, , .		0
18	Modulation of Esterified Drug Metabolism by Tanshinones from <i>Salvia miltiorrhiza</i> ("Danshenâ€). Journal of Natural Products, 2013, 76, 36-44.	3.0	53

#	Article	IF	CITATIONS
19	Targeting Oxidative Stress in Embryonal Rhabdomyosarcoma. Cancer Cell, 2013, 24, 710-724.	16.8	252
20	The development and application of small molecule modulators of SF3b as therapeutic agents for cancer. Drug Discovery Today, 2013, 18, 43-49.	6.4	89
21	Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors. Chemico-Biological Interactions, 2013, 203, 226-230.	4.0	48
22	Neural Stem Cell-Mediated Delivery of Irinotecan-Activating Carboxylesterases to Glioma: Implications for Clinical Use. Stem Cells Translational Medicine, 2013, 2, 983-992.	3.3	58
23	Control of RhoA Methylation by Carboxylesterase I. Journal of Biological Chemistry, 2013, 288, 19177-19183.	3.4	16
24	Toxicology and Biodistribution Studies for MGH2.1, an Oncolytic Virus that Expresses Two Prodrug-activating Genes, in Combination with Prodrugs. Molecular Therapy - Nucleic Acids, 2013, 2, e113.	5.1	10
25	ATP-dependent Mitochondrial Porphyrin Importer ABCB6 Protects against Phenylhydrazine Toxicity. Journal of Biological Chemistry, 2012, 287, 12679-12690.	3.4	57
26	Covalent inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by the carbamates JZL184 and URB597. Biochemical Pharmacology, 2012, 84, 1215-1222.	4.4	29
27	High Payload Dual Therapeuticâ€Imaging Nanocarriers for Triggered Tumor Delivery. Small, 2012, 8, 2895-2903.	10.0	13
28	Global and local molecular dynamics of a bacterial carboxylesterase provide insight into its catalytic mechanism. Journal of Molecular Modeling, 2012, 18, 2869-2883.	1.8	11
29	Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon. Toxicology and Applied Pharmacology, 2012, 258, 145-150.	2.8	45
30	Carboxylesterase inhibitors. Expert Opinion on Therapeutic Patents, 2011, 21, 1159-1171.	5.0	99
31	Sudemycins, Novel Small Molecule Analogues of FR901464, Induce Alternative Gene Splicing. ACS Chemical Biology, 2011, 6, 582-589.	3.4	155
32	Mouse serum paraoxonase-1 lactonase activity is specific for medium-chain length fatty acid lactones. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 39-45.	2.4	6
33	Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. Biochemical Pharmacology, 2011, 81, 24-31.	4.4	86
34	Immobilization of active human carboxylesterase 1 in biomimetic silica nanoparticles. Biotechnology Progress, 2011, 27, 863-869.	2.6	11
35	Requirements for mammalian carboxylesterase inhibition by substituted ethane-1,2-diones. Bioorganic and Medicinal Chemistry, 2011, 19, 4635-4643.	3.0	20
36	Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme. PLoS ONE, 2011, 6, e17441.	2.5	19

#	Article	IF	CITATIONS
37	Therapeutic Targeting of Melanoma Cells Using Neural Stem Cells Expressing Carboxylesterase, a CPT-11 Activating Enzyme. Current Stem Cell Research and Therapy, 2010, 5, 273-276.	1.3	26
38	<i>In silico</i> design and evaluation of carboxylesterase inhibitors. Journal of Pesticide Sciences, 2010, 35, 240-249.	1.4	8
39	Human Carboxylesterase 1 Stereoselectively Binds the Nerve Agent Cyclosarin and Spontaneously Hydrolyzes the Nerve Agent Sarin. Molecular Pharmacology, 2010, 77, 508-516.	2.3	47
40	Structureâ^'Activity Relationships of Substituted 1-Pyridyl-2-phenyl-1,2-ethanediones: Potent, Selective Carboxylesterase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 8709-8715.	6.4	17
41	Inactivation of Lipid Glyceryl Ester Metabolism in Human THP1 Monocytes/Macrophages by Activated Organophosphorus Insecticides: Role of Carboxylesterases 1 and 2. Chemical Research in Toxicology, 2010, 23, 1890-1904.	3.3	81
42	Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 31-41.	2.4	37
43	Comparison of benzil and trifluoromethyl ketone (TFK)-mediated carboxylesterase inhibition using classical and 3D-quantitative structure–activity relationship analysis. Bioorganic and Medicinal Chemistry, 2009, 17, 149-164.	3.0	33
44	Nanoparticles Containing Anti-inflammatory Agents as Chemotherapy Adjuvants II: Role of Plasma Esterases in Drug Release. AAPS Journal, 2009, 11, 120-122.	4.4	26
45	Improved, Selective, Human Intestinal Carboxylesterase Inhibitors Designed to Modulate 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (Irinotecan; CPT-11) Toxicity. Journal of Medicinal Chemistry, 2009, 52, 3742-3752.	6.4	47
46	Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 643-654.	2.4	69
47	Identification of Human Intestinal Carboxylesterase as the Primary Enzyme for Activation of a Doxazolidine Carbamate Prodrug. Journal of Medicinal Chemistry, 2008, 51, 298-304.	6.4	33
48	Evaluation of the â€~side door' in carboxylesterase-mediated catalysis and inhibition. Biological Chemistry, 2008, 389, 149-162.	2.5	20
49	Modifications of human carboxylesterase for improved prodrug activation. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 1153-1165.	3.3	31
50	Tumor-Targeted Enzyme/Prodrug Therapy Mediates Long-term Disease-Free Survival of Mice Bearing Disseminated Neuroblastoma. Cancer Research, 2007, 67, 22-25.	0.9	127
51	Analysis of Mammalian Carboxylesterase Inhibition by Trifluoromethylketone-Containing Compounds. Molecular Pharmacology, 2007, 71, 713-723.	2.3	38
52	Crystal Structures of Human Carboxylesterase 1 in Covalent Complexes with the Chemical Warfare Agents Soman and Tabun,. Biochemistry, 2007, 46, 5063-5071.	2.5	61
53	Selective Inhibition of Carboxylesterases by Isatins, Indole-2,3-diones. Journal of Medicinal Chemistry, 2007, 50, 1876-1885.	6.4	66
54	Planarity and Constraint of the Carbonyl Groups in 1,2-Diones Are Determinants for Selective Inhibition of Human Carboxylesterase 1. Journal of Medicinal Chemistry, 2007, 50, 5727-5734.	6.4	37

#	Article	IF	CITATIONS
55	Analysis of the inhibition of mammalian carboxylesterases by novel fluorobenzoins and fluorobenzils. Bioorganic and Medicinal Chemistry, 2007, 15, 3801-3817.	3.0	41
56	Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases. Toxicology and Applied Pharmacology, 2007, 221, 1-12.	2.8	176
57	Species Differences in the in Vitro Metabolism of Deltamethrin and Esfenvalerate: Differential Oxidative and Hydrolytic Metabolism by Humans and Rats. Drug Metabolism and Disposition, 2006, 34, 1764-1771.	3.3	92
58	Multisite Promiscuity in the Processing of Endogenous Substrates by Human Carboxylesterase 1. Journal of Molecular Biology, 2006, 363, 201-214.	4.2	128
59	Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochemical Pharmacology, 2006, 71, 657-669.	4.4	151
60	Development of an etoposide prodrug for dual prodrug-enzyme antitumor therapy. Molecular Cancer Therapeutics, 2006, 5, 1577-1584.	4.1	7
61	Carboxylesterases - Detoxifying Enzymes and Targets for Drug Therapy. Current Medicinal Chemistry, 2006, 13, 1045-1054.	2.4	135
62	Intracellular inhibition of carboxylesterases by benzil: modulation of CPT-11 cytotoxicity. Molecular Cancer Therapeutics, 2006, 5, 2281-2288.	4.1	40
63	Development of a Tumor-Selective Approach to Treat Metastatic Cancer. PLoS ONE, 2006, 1, e23.	2.5	111
64	The Crystal Structure of the Complex of the Anticancer Prodrug 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin (CPT-11) with Torpedo californica Acetylcholinesterase Provides a Molecular Explanation for Its Cholinergic Action. Molecular Pharmacology, 2005, 67, 1874-1881.	2.3	36
65	The 3D structure of the anticancer prodrug CPT-11 with Torpedo californica acetylcholinesterase rationalizes its inhibitory action on AChE and its hydrolysis by butyrylcholinesterase and carboxylesterase. Chemico-Biological Interactions, 2005, 157-158, 153-157.	4.0	14
66	Inhibition of acetylcholinesterase by the anticancer prodrug CPT-11. Chemico-Biological Interactions, 2005, 157-158, 247-252.	4.0	35
67	Keynote review: Mammalian carboxylesterases: From drug targets to protein therapeutics. Drug Discovery Today, 2005, 10, 313-325.	6.4	190
68	Activation and antitumor activity of CPT-11 in plasma esterase-deficient mice. Cancer Chemotherapy and Pharmacology, 2005, 56, 629-636.	2.3	60
69	Development of Prodrugs for Enzyme-Mediated, Tumor-Selective Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2005, 5, 107-113.	7.0	11
70	Brain Tumor Oncolysis with Replication-Conditional Herpes Simplex Virus Type 1 Expressing the Prodrug-Activating Genes, CYP2B1 and Secreted Human Intestinal Carboxylesterase, in Combination with Cyclophosphamide and Irinotecan. Cancer Research, 2005, 65, 6850-6857.	0.9	99
71	Structural Insights into Drug Processing by Human Carboxylesterase 1: Tamoxifen, Mevastatin, and Inhibition by Benzil. Journal of Molecular Biology, 2005, 352, 165-177.	4.2	124
72	Identification and Characterization of Novel Benzil (Diphenylethane-1,2-dione) Analogues as Inhibitors of Mammalian Carboxylesterases. Journal of Medicinal Chemistry, 2005, 48, 2906-2915.	6.4	167

#	Article	IF	CITATIONS
73	Inhibition of Carboxylesterases by Benzil (Diphenylethane-1,2-dione) and Heterocyclic Analogues Is Dependent upon the Aromaticity of the Ring and the Flexibility of the Dione Moiety. Journal of Medicinal Chemistry, 2005, 48, 5543-5550.	6.4	59
74	Enzyme-Prodrug Systems: Carboxylesterase/CPT-11. , 2004, 90, 247-262.		3
75	Molecular Modeling of CPT-11 Metabolism by Carboxylesterases (CEs):  Use of pnb CE as a Model. Biochemistry, 2004, 43, 1874-1882.	2.5	17
76	Discovery of Novel Selective Inhibitors of Human Intestinal Carboxylesterase for the Amelioration of Irinotecan-Induced Diarrhea: Synthesis, Quantitative Structure-Activity Relationship Analysis, and Biological Activity. Molecular Pharmacology, 2004, 65, 1336-1343.	2.3	91
77	Characterization of inhibitors of specific carboxylesterases: development of carboxylesterase inhibitors for translational application. Molecular Cancer Therapeutics, 2004, 3, 903-9.	4.1	15
78	Crystal Structure of Human Carboxylesterase 1 Complexed with the Alzheimer's Drug Tacrine. Chemistry and Biology, 2003, 10, 341-349.	6.0	155
79	Synthesis and evaluation of esters and carbamates to identify critical functional groups for esterase-specific metabolism. Bioorganic and Medicinal Chemistry, 2003, 11, 3237-3244.	3.0	10
80	Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nature Structural and Molecular Biology, 2003, 10, 349-356.	8.2	195
81	p53-Mediated Regulation of Expression of a Rabbit Liver Carboxylesterase Confers Sensitivity to 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11). Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 699-705.	2.5	1
82	Carboxylesterase-Mediated Sensitization of Human Tumor Cells to CPT-11 Cannot Override ABCG2-Mediated Drug Resistance. Molecular Pharmacology, 2003, 64, 279-288.	2.3	45
83	Activation of a camptothecin prodrug by specific carboxylesterases as predicted by quantitative structure-activity relationship and molecular docking studies. Molecular Cancer Therapeutics, 2003, 2, 1171-81.	4.1	11
84	Structural insights into CPT-11 activation by mammalian carboxylesterases. Nature Structural Biology, 2002, 9, 337-342.	9.7	144
85	Efficacy and toxicity of a virus-directed enzyme prodrug therapy purging method: preclinical assessment and application to bone marrow samples from neuroblastoma patients. Cancer Research, 2002, 62, 5001-7.	0.9	27
86	Structural Constraints Affect the Metabolism of 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) by Carboxylesterases. Molecular Pharmacology, 2001, 60, 355-362.	2.3	61
87	Isolation and characterization of a cDNA encoding a horse liver butyrylcholinesterase. Biochemical Pharmacology, 2000, 59, 773-781.	4.4	16
88	Construction of Adenovirus for High Level Expression of Small RNAs in Mammalian Cells: Application to a Bcl-2 Ribozyme. Molecular Biotechnology, 2000, 15, 105-114.	2.4	8
89	Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda, and COS7 Cells for Recombinant Gene Expression: Application to a Rabbit Liver Carboxylesterase. Molecular Biotechnology, 2000, 16, 193-202.	2.4	96
90	Use of the Ornithine Decarboxylase Promoter to Achieve N-MYC-Mediated Overexpression of a Rabbit Carboxylesterase to Sensitize Neuroblastoma Cells to CPT-11. Molecular Therapy, 2000, 1, 457-463.	8.2	10

#	Article	IF	CITATIONS
91	In situ subcellular localization of epitope-tagged human and rabbit carboxylesterases. Cytometry, 1998, 32, 223-232.	1.8	11
92	Isolation and partial characterisation of a Chinese hamster O6-alkylguanine-DNA alky It ransferase cDNA. Nucleic Acids Research, 1992, 20, 1891-1895.	14.5	22
93	Tissue-specific expression and induction of humanO6-alkylguanine-dna alkyltransferase in transgenic mice. Molecular Carcinogenesis, 1992, 6, 26-31.	2.7	8
94	Metabolism of 2-napthylamine and benzidine by rat and human bladder organ cultures. Carcinogenesis, 1984, 5, 949-954.	2.8	9