
Carol E Schrader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1878603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism and Regulation of Class Switch Recombination. Annual Review of Immunology, 2008, 26, 261-292.	21.8	893
2	Reduced Isotype Switching in Splenic B Cells from Mice Deficient in Mismatch Repair Enzymes. Journal of Experimental Medicine, 1999, 190, 323-330.	8.5	202
3	lgH Chain Class Switch Recombination: Mechanism and Regulation. Journal of Immunology, 2014, 193, 5370-5378.	0.8	194
4	Inducible DNA breaks in Ig S regions are dependent on AID and UNG. Journal of Experimental Medicine, 2005, 202, 561-568.	8.5	159
5	APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. Journal of Experimental Medicine, 2007, 204, 3017-3026.	8.5	156
6	Role for Mismatch Repair Proteins Msh2, Mlh1, and Pms2 in Immunoglobulin Class Switching Shown by Sequence Analysis of Recombination Junctions. Journal of Experimental Medicine, 2002, 195, 367-373.	8.5	130
7	Activation-Induced Cytidine Deaminase-Dependent DNA Breaks in Class Switch Recombination Occur during G1 Phase of the Cell Cycle and Depend upon Mismatch Repair. Journal of Immunology, 2007, 179, 6064-6071.	0.8	123
8	The μ Switch Region Tandem Repeats Are Important, but Not Required, for Antibody Class Switch Recombination. Journal of Experimental Medicine, 2001, 193, 159-168.	8.5	90
9	Mismatch repair converts AID-instigated nicks to double-strand breaks for antibody class-switch recombination. Trends in Genetics, 2006, 22, 23-28.	6.7	84
10	Mutations occur in the Ig SÂ region but rarely in SÂ regions prior to class switch recombination. EMBO Journal, 2003, 22, 5893-5903.	7.8	65
11	The Sμ Tandem Repeat Region Is Critical for Ig Isotype Switching in the Absence of Msh2. Immunity, 2003, 19, 515-524.	14.3	62
12	AID Binds Cooperatively with UNG and Msh2-Msh6 to Ig Switch Regions Dependent upon the AID C Terminus. Journal of Immunology, 2011, 187, 2464-2475.	0.8	58
13	Mlh1 Can Function in Antibody Class Switch Recombination Independently of Msh2. Journal of Experimental Medicine, 2003, 197, 1377-1383.	8.5	56
14	Differential expression of APE1 and APE2 in germinal centers promotes error-prone repair and A:T mutations during somatic hypermutation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9217-9222.	7.1	52
15	Dendritic cells support production of IgA and other non-IgM isotypes in clonal microculture. International Immunology, 1990, 2, 563-570.	4.0	51
16	The roles of APE1, APE2, DNA polymerase β and mismatch repair in creating S region DNA breaks during antibody class switch. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 645-652.	4.0	50
17	Deletion of the Nucleotide Excision Repair Gene Ercc1 Reduces Immunoglobulin Class Switching and Alters Mutations Near Switch Recombination Junctions. Journal of Experimental Medicine, 2004, 200, 321-330.	8.5	36
18	Shifts in targeting of class switch recombination sites in mice that lack μ switch region tandem repeats or Msh2. Journal of Experimental Medicine, 2005, 201, 1885-1890.	8.5	29

CAROL E SCHRADER

#	Article	IF	CITATIONS
19	The DNA Damage Response Regulates RAG1/2 Expression in Pre–B Cells through ATM-FOXO1 Signaling. Journal of Immunology, 2016, 197, 2918-2929.	0.8	27
20	Apurinic/Apyrimidinic Endonuclease 2 Is Necessary for Normal B Cell Development and Recovery of Lymphoid Progenitors after Chemotherapeutic Challenge. Journal of Immunology, 2011, 186, 1943-1950.	0.8	26
21	A novel regulatory circuit in base excision repair involving AP endonuclease 1, Creb1 and DNA polymerase β. Nucleic Acids Research, 2011, 39, 3156-3165.	14.5	26
22	Class Switch Recombination Efficiency and Junction Microhomology Patterns in Msh2-, Mlh1-, and Exo1-Deficient Mice Depend on the Presence of μ Switch Region Tandem Repeats. Journal of Immunology, 2009, 183, 1222-1228.	0.8	24
23	p53 Represses Class Switch Recombination to IgG2a through Its Antioxidant Function. Journal of Immunology, 2010, 184, 6177-6187.	0.8	23
24	Apurinic/Apyrimidinic Endonuclease 2 Regulates the Expansion of Germinal Centers by Protecting against Activation-Induced Cytidine Deaminase–Independent DNA Damage in B Cells. Journal of Immunology, 2014, 193, 931-939.	0.8	15
25	Reassessment of the Role of Mut S Homolog 5 in Ig Class Switch Recombination Shows Lack of Involvement incis- andtrans-Switching. Journal of Immunology, 2008, 181, 8450-8459.	0.8	14
26	ATM Increases Activation-Induced Cytidine Deaminase Activity at Downstream S Regions during Class-Switch Recombination. Journal of Immunology, 2014, 192, 4887-4896.	0.8	14
27	Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells. PLoS Genetics, 2015, 11, e1005438.	3.5	13
28	Mismatch Repair Proteins and AID Activity Are Required for the Dominant Negative Function of C-Terminally Deleted AID in Class Switching. Journal of Immunology, 2014, 193, 1440-1450.	0.8	11
29	DNA polymerases \hat{I}^2 and \hat{I} » do not directly affect Ig variable region somatic hypermutation although their absence reduces the frequency of mutations. DNA Repair, 2013, 12, 1087-1093.	2.8	10
30	Dendritic Cell Dependent Expression of IgA By Clones in T/B Microcultures. Advances in Experimental Medicine and Biology, 1993, 329, 59-64.	1.6	10
31	A microculture containing TH2 and dendritic cells supports the production of IgA by clones from both primary and IgA memory B cells and by single germinal center B cells from Peyer's patches. Immunologic Research, 1991, 10, 389-392.	2.9	9
32	Cellular and Molecular Biologic Approaches for Analyzing the in Vivo Development and Maintenance of Gut Mucosal Iga Responses. Advances in Experimental Medicine and Biology, 1995, 371A, 429-434.	1.6	8
33	The role of Apex2 in class-switch recombination of immunoglobulin genes. International Immunology, 2010, 22, 213-213.	4.0	6
34	The DNA Glycosylases Ogg1 and Nth1 Do Not Contribute to Ig Class Switching in Activated Mouse Splenic B Cells. PLoS ONE, 2012, 7, e36061.	2.5	5
35	APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. Journal of Experimental Medicine, 2007, 204, 3295-3295.	8.5	2
36	Correction: AID Binds Cooperatively With UNG and Msh2-Msh6 to Ig Switch Regions Dependent upon the AID C Terminus. Journal of Immunology, 2014, 192, 4934-4934.	0.8	2

#	Article	IF	CITATIONS
37	Individual Substitution Mutations in the AID C Terminus That Ablate IgH Class Switch Recombination. PLoS ONE, 2015, 10, e0134397.	2.5	2
38	Response to Comment on "Reassessment of the Role of Mut S Homolog 5 in Ig Class Switch Recombination Shows Lack of Involvement in cis- and trans-Switching― Journal of Immunology, 2009, 182, 4496-4497.	0.8	1
39	Response to Comment on "lgH Chain Class Switch Recombination: Mechanism and Regulation― Journal of Immunology, 2015, 194, 2040-2040.	0.8	1
40	Correction: p53 Represses Class Switch Recombination to IgG2a through Its Antioxidant Function. Journal of Immunology, 2011, 187, 4920-4920.	0.8	0
41	Base Excision Repair in the Immune System. , 2017, , 421-448.		0