
Darren J Obbard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/187789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Population-Genomic Analysis Identifies a Low Rate of Global Adaptive Fixation in the Proteins of the Cyclical Parthenogen <i>Daphnia magna</i> . Molecular Biology and Evolution, 2022, 39, .	8.9	8
2	The discovery, distribution, and diversity of DNA viruses associated with <i>Drosophila melanogaster</i> in Europe. Virus Evolution, 2021, 7, veab031.	4.9	25
3	Virus Prevalence and Genetic Diversity Across a Wild Bumblebee Community. Frontiers in Microbiology, 2021, 12, 650747.	3.5	10
4	<i>Drosophila</i> Evolution over Space and Time (DEST): A New Population Genomics Resource. Molecular Biology and Evolution, 2021, 38, 5782-5805.	8.9	37
5	Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Molecular Biology and Evolution, 2020, 37, 2661-2678.	8.9	104
6	A new lineage of segmented RNA viruses infecting animals. Virus Evolution, 2020, 6, vez061.	4.9	37
7	Widespread gene duplication and adaptive evolution in the RNA interference pathways of the Drosophila obscura group. BMC Evolutionary Biology, 2019, 19, 99.	3.2	15
8	A Magnesium Transport Protein Related to Mammalian SLC41 and Bacterial MgtE Contributes to Circadian Timekeeping in a Unicellular Green Alga. Genes, 2019, 10, 158.	2.4	7
9	Induction and Suppression of NF-ήB Signalling by a DNA Virus of <i>Drosophila</i> . Journal of Virology, 2019, 93, .	3.4	35
10	RNA-Interference Pathways Display High Rates of Adaptive Protein Evolution in Multiple Invertebrates. Genetics, 2018, 208, 1585-1599.	2.9	53
11	Expansion of the metazoan virosphere: progress, pitfalls, and prospects. Current Opinion in Virology, 2018, 31, 17-23.	5.4	33
12	Mitogenome phylogeographic analysis of a planktonic crustacean. Molecular Phylogenetics and Evolution, 2018, 129, 138-148.	2.7	36
13	Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genetics, 2018, 14, e1007533.	3.5	95
14	Isolation of a natural DNA virus of Drosophila melanogaster, and characterisation of host resistance and immune responses. PLoS Pathogens, 2018, 14, e1007050.	4.7	52
15	The virome of Drosophila suzukii, an invasive pest of soft fruit. Virus Evolution, 2018, 4, vey009.	4.9	67
16	Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162381.	2.6	32
17	Variation and Evolution in the Glutamine-Rich Repeat Region of <i>Drosophila</i> Argonaute-2. G3: Genes, Genomes, Genetics, 2016, 6, 2563-2572.	1.8	12
18	Repeated Duplication of Argonaute2 Is Associated with Strong Selection and Testis Specialization in <i>Drosophila</i> . Genetics, 2016, 204, 757-769.	2.9	20

DARREN J OBBARD

#	Article	IF	CITATIONS
19	Twenty-Five New Viruses Associated with the Drosophilidae (Diptera). Evolutionary Bioinformatics, 2016, 12s2, EBO.S39454.	1.2	92
20	Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine. Genome Biology and Evolution, 2016, 8, 507-518.	2.5	98
21	Hybridization and pre-zygotic reproductive barriers in <i>Plasmodium</i> . Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143027.	2.6	31
22	Are arthropods at the heart of virus evolution?. ELife, 2015, 4, .	6.0	26
23	The evolution, diversity, and host associations of rhabdoviruses. Virus Evolution, 2015, 1, vev014.	4.9	68
24	The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster. PLoS Biology, 2015, 13, e1002210.	5.6	272
25	Recent insights into the evolution of innate viral sensing in animals. Current Opinion in Microbiology, 2014, 20, 170-175.	5.1	12
26	Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi. PLoS Pathogens, 2014, 10, e1004256.	4.7	75
27	Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Research, 2014, 42, 9436-9446.	14.5	118
28	The genetics of host–virus coevolution in invertebrates. Current Opinion in Virology, 2014, 8, 73-78.	5.4	35
29	Suppressors of RNAi from plant viruses are subject to episodic positive selection. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130965.	2.6	51
30	Estimating Divergence Dates and Substitution Rates in the Drosophila Phylogeny. Molecular Biology and Evolution, 2012, 29, 3459-3473.	8.9	230
31	Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex. BMC Evolutionary Biology, 2012, 12, 63.	3.2	47
32	Molecular evolution and phylogenetics of rodent malaria parasites. BMC Evolutionary Biology, 2012, 12, 219.	3.2	33
33	Alternative splicing of the Anopheles gambiae Dscam gene in diverse Plasmodium falciparum infections. Malaria Journal, 2011, 10, 156.	2.3	49
34	Host-switching by a vertically transmitted rhabdovirus in <i>Drosophila</i> . Biology Letters, 2011, 7, 747-750.	2.3	26
35	Rhabdoviruses in Two Species of Drosophila: Vertical Transmission and a Recent Sweep. Genetics, 2011, 188, 141-150.	2.9	45
36	Recent and Recurrent Selective Sweeps of the Antiviral RNAi Gene Argonaute-2 in Three Species of Drosophila. Molecular Biology and Evolution, 2011, 28, 1043-1056.	8.9	55

DARREN J OBBARD

#	Article	IF	CITATIONS
37	Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts. PLoS Pathogens, 2011, 7, e1002260.	4.7	172
38	Sigma viruses from three species of <i>Drosophila</i> form a major new clade in the rhabdovirus phylogeny. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 35-44.	2.6	60
39	Symptoms of population range expansion: lessons from phenotypic and genetic differentiation in hexaploid <i>Mercurialis annua</i> . Plant Ecology and Diversity, 2010, 3, 103-108.	2.4	8
40	Quantifying Adaptive Evolution in the Drosophila Immune System. PLoS Genetics, 2009, 5, e1000698.	3.5	219
41	Male morphology and dishonest signalling in a fig wasp. Animal Behaviour, 2009, 78, 147-153.	1.9	20
42	Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors. Malaria Journal, 2009, 8, 117.	2.3	24
43	The evolution of RNAi as a defence against viruses and transposable elements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 99-115.	4.0	423
44	Parasitism and breeding system variation in North American populations of Daphnia pulex. Ecological Research, 2008, 23, 235-240.	1.5	17
45	The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae. BMC Evolutionary Biology, 2008, 8, 274.	3.2	47
46	Fighting strategies in two species of fig wasp. Animal Behaviour, 2008, 76, 315-322.	1.9	39
47	RNA Interference: Endogenous siRNAs Derived from Transposable Elements. Current Biology, 2008, 18, R561-R563.	3.9	16
48	The age and evolution of an antiviral resistance mutation in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2027-2034.	2.6	48
49	Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection. Molecular Ecology, 2007, 16, 3497-3510.	3.9	31
50	The recent spread of a vertically transmitted virus through populations of <i>Drosophila melanogaster</i> . Molecular Ecology, 2007, 16, 3947-3954.	3.9	61
51	Sexual Systems and Population Genetic Structure in an Annual Plant: Testing the Metapopulation Model. American Naturalist, 2006, 167, 354-366.	2.1	81
52	HYBRIDIZATION, POLYPLOIDY, AND THE EVOLUTION OF SEXUAL SYSTEMS IN MERCURIALIS (EUPHORBIACEAE). Evolution; International Journal of Organic Evolution, 2006, 60, 1801-1815.	2.3	83
53	Simple allelic-phenotype diversity and differentiation statistics for allopolyploids. Heredity, 2006, 97, 296-303.	2.6	102
54	Natural Selection Drives Extremely Rapid Evolution in Antiviral RNAi Genes. Current Biology, 2006, 16, 580-585.	3.9	270

DARREN J OBBARD

#	Article	IF	CITATIONS
55	HYBRIDIZATION, POLYPLOIDY, AND THE EVOLUTION OF SEXUAL SYSTEMS IN MERCURIALIS (EUPHORBIACEAE). Evolution; International Journal of Organic Evolution, 2006, 60, 1801.	2.3	5
56	Hybridization, polyploidy, and the evolution of sexual systems in Mercurialis (Euphorbiaceae). Evolution; International Journal of Organic Evolution, 2006, 60, 1801-15.	2.3	21
57	Polyploidy and the sexual system: what can we learn from Mercurialis annua?. Biological Journal of the Linnean Society, 2004, 82, 547-560.	1.6	121
58	Probing the primacy of the patch: what makes a metapopulation?. Journal of Ecology, 2003, 91, 485-488.	4.0	30