Benjamin J Nichols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/187741/publications.pdf

Version: 2024-02-01

36 papers 5,486 citations

257450 24 h-index 395702 33 g-index

37 all docs

 $\begin{array}{c} 37 \\ \text{docs citations} \end{array}$

37 times ranked

6185 citing authors

#	Article	IF	CITATIONS
1	Methamphetamine enhances caveolar transport of therapeutic agents across the rodent blood-brain barrier. Cell Reports Medicine, 2022, 3, 100497.	6.5	4
2	Listeria monocytogenes Exploits Host Caveolin for Cell-to-Cell Spreading. MBio, 2020, 11, .	4.1	11
3	Flotillinâ€1 interacts with the serotonin transporter and modulates chronic corticosterone response. Genes, Brain and Behavior, 2019, 18, e12482.	2.2	22
4	BioID identifies proteins involved in the cell biology of caveolae. PLoS ONE, 2018, 13, e0209856.	2.5	7
5	Cells respond to deletion of CAV1 by increasing synthesis of extracellular matrix. PLoS ONE, 2018, 13, e0205306.	2.5	5
6	Flotillin proteins recruit sphingosine to membranes and maintain cellular sphingosine-1-phosphate levels. PLoS ONE, 2018, 13, e0197401.	2.5	13
7	EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress. Current Biology, 2017, 27, 2951-2962.e5.	3.9	61
8	Caveolae: One Function or Many?. Trends in Cell Biology, 2016, 26, 177-189.	7.9	194
9	Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nature Communications, 2015, 6, 6867.	12.8	89
10	Caveolae protect endothelial cells from membrane rupture during increased cardiac output. Journal of Cell Biology, 2015, 211, 53-61.	5.2	113
11	Caveolae protect endothelial cells from membrane rupture during increased cardiac output. Journal of General Physiology, 2015, 146, 1465OIA58.	1.9	O
12	Caveolae protect endothelial cells from membrane rupture during increased cardiac output. Journal of Experimental Medicine, 2015, 212, 21211OIA89.	8.5	0
13	Cavin-3 Knockout Mice Show that Cavin-3 Is Not Essential for Caveolae Formation, for Maintenance of Body Composition, or for Glucose Tolerance. PLoS ONE, 2014, 9, e102935.	2.5	16
14	Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells. Basic Research in Cardiology, 2014, 109, 439.	5.9	19
15	The Role of Flotillins in Regulating A \hat{I}^2 Production, Investigated Using Flotillin 1-/-, Flotillin 2-/- Double Knockout Mice. PLoS ONE, 2014, 9, e85217.	2.5	28
16	News from the caves: update on the structure and function of caveolae. Current Opinion in Cell Biology, 2014, 29, 99-106.	5.4	75
17	Clathrin-independent pathways do not contribute significantly to endocytic flux. ELife, 2014, 3, e03970.	6.0	144
18	Molecular Composition and Ultrastructure of the Caveolar Coat Complex. PLoS Biology, 2013, 11, e1001640.	5.6	135

#	Article	IF	Citations
19	The roles of flotillin microdomains – endocytosis and beyond. Journal of Cell Science, 2011, 124, 3933-3940.	2.0	231
20	Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. Journal of Cell Science, 2011, 124, 2777-2785.	2.0	140
21	Endocytosis of flotillin-1 and flotillin-2 is regulated by Fyn kinase. Journal of Cell Science, 2009, 122, 912-918.	2.0	115
22	SDPR induces membrane curvature and functions in the formation of caveolae. Nature Cell Biology, 2009, 11, 807-814.	10.3	218
23	Molecular mechanisms of clathrin-independent endocytosis. Journal of Cell Science, 2009, 122, 1713-1721.	2.0	251
24	Coassembly of Flotillins Induces Formation of Membrane Microdomains, Membrane Curvature, and Vesicle Budding. Current Biology, 2007, 17, 1151-1156.	3.9	226
25	Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nature Cell Biology, 2006, 8, 46-54.	10.3	476
26	Gene delivery by dendrimers operates via different pathways in different cells, but is enhanced by the presence of caveolin. Journal of Immunological Methods, 2006, 314, 134-146.	1.4	56
27	The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. Journal of Cell Science, 2005, 118, 5269-5277.	2.0	184
28	Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nature Cell Biology, 2004, 6, 238-243.	10.3	197
29	Functional interdependence between septin and actin cytoskeleton., 2004, 5, 43.		88
30	Dynamics of putative raft-associated proteins at the cell surface. Journal of Cell Biology, 2004, 165, 735-746.	5.2	432
31	GM1-Containing Lipid Rafts Are Depleted within Clathrin-Coated Pits. Current Biology, 2003, 13, 686-690.	3.9	142
32	A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nature Cell Biology, 2002, 4, 374-378.	10.3	234
33	Endocytosis without clathrin coats. Trends in Cell Biology, 2001, 11, 406-412.	7.9	378
34	Rapid Cycling of Lipid Raft Markers between the Cell Surface and Golgi Complex. Journal of Cell Biology, 2001, 153, 529-542.	5.2	496
35	A Vacuolar v–t-SNARE Complex, the Predominant Form In Vivo and on Isolated Vacuoles, Is Disassembled and Activated for Docking and Fusion. Journal of Cell Biology, 1998, 140, 61-69.	5.2	235
36	Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature, 1997, 387, 199-202.	27.8	451