
Axel Schweickert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1877309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ion Channel Polycystin-2 Is Required for Left-Right Axis Determination in Mice. Current Biology, 2002, 12, 938-943.	3.9	401
2	Cilia-Driven Leftward Flow Determines Laterality in Xenopus. Current Biology, 2007, 17, 60-66.	3.9	245
3	The evolution and conservation of left-right patterning mechanisms. Development (Cambridge), 2014, 141, 1603-1613.	2.5	141
4	The Nodal Inhibitor Coco Is a Critical Target of Leftward Flow in Xenopus. Current Biology, 2010, 20, 738-743.	3.9	134
5	The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing <i>miR-17</i> activity. Development (Cambridge), 2010, 137, 1107-1116.	2.5	129
6	Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation, 2007, 75, 133-146.	1.9	108
7	<i>Xenopus</i> , an ideal model system to study vertebrate leftâ€right asymmetry. Developmental Dynamics, 2009, 238, 1215-1225.	1.8	98
8	Symmetry breakage in the vertebrate embryo: When does it happen and how does it work?. Developmental Biology, 2014, 393, 109-123.	2.0	84
9	Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. Developmental Biology, 2009, 331, 281-291.	2.0	74
10	ATP4a Is Required for Wnt-Dependent Foxj1 Expression and Leftward Flow in Xenopus Left-Right Development. Cell Reports, 2012, 1, 516-527.	6.4	73
11	A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development (Cambridge), 2014, 141, 1514-1525.	2.5	70
12	Serotonin Signaling Is Required for Wnt-Dependent GRP Specification and Leftward Flow in Xenopus. Current Biology, 2012, 22, 33-39.	3.9	60
13	A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of <i>Xenopus</i> tadpoles. Development (Cambridge), 2014, 141, 1526-1533.	2.5	52
14	A Conserved Role of the Unconventional Myosin 1d in Laterality Determination. Current Biology, 2018, 28, 810-816.e3.	3.9	39
15	Wnt11b Is Involved in Cilia-Mediated Symmetry Breakage during Xenopus Left-Right Development. PLoS ONE, 2013, 8, e73646.	2.5	34
16	ATP4a is required for development and function of the Xenopus mucociliary epidermis – a potential model to study proton pump inhibitor-associated pneumonia. Developmental Biology, 2015, 408, 292-304.	2.0	32
17	Cilia are required for asymmetric nodal induction in the sea urchin embryo. BMC Developmental Biology, 2016, 16, 28.	2.1	29
18	Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of the Nodal inhibitor Dand5. Nature Communications, 2021, 12, 5482.	12.8	24

AXEL SCHWEICKERT

#	Article	IF	CITATIONS
19	Linking early determinants and cilia-driven leftward flow in left–right axis specification of Xenopus laevis: A theoretical approach. Differentiation, 2012, 83, S67-S77.	1.9	21
20	<i>Connexin26</i> -mediated transfer of laterality cues in <i>Xenopus</i> . Biology Open, 2012, 1, 473-481.	1.2	18
21	An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus. IScience, 2018, 2, 76-85.	4.1	15
22	Leftâ€asymmetric expression of <i>Galanin</i> in the linear heart tube of the mouse embryo is independent of the nodal coâ€receptor gene <i>cryptic</i> . Developmental Dynamics, 2008, 237, 3557-3564.	1.8	13
23	Symmetry breakage in the frog <i>Xenopus</i> : Role of Rab11 and the ventralâ€right blastomere. Genesis, 2014, 52, 588-599.	1.6	13
24	Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us?. Journal of Cardiovascular Development and Disease, 2018, 5, 1.	1.6	12
25	A dual function of FGF signaling in <i>Xenopus</i> left-right axis formation. Development (Cambridge), 2019, 146, .	2.5	11
26	ATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles. Data in Brief, 2015, 4, 22-31.	1.0	10
27	The Xenopus Embryo: An Ideal Model System to Study Human Ciliopathies. Current Pathobiology Reports, 2015, 3, 115-127.	3.4	7
28	<i>Xenopus</i> , an ideal model organism to study laterality in conjoined twins. Genesis, 2017, 55, e22993.	1.6	7
29	Leftward Flow Determines Laterality in Conjoined Twins. Current Biology, 2017, 27, 543-548.	3.9	6
30	Serotonin and MucXS release by small secretory cells depend on Xpod , a SSC specific marker gene. Genesis, 2020, 58, e23344.	1.6	5
31	dmrt2 and myf5 Link Early Somitogenesis to Left-Right Axis Determination in Xenopus laevis. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	3