
Alexandria P Cogdill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1877297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunology Research, 2022, 10, 372-383.	1.6	36
2	Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature, 2022, 606, 797-803.	13.7	54
3	Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nature Medicine, 2021, 27, 1432-1441.	15.2	216
4	Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell, 2021, 184, 5338-5356.e21.	13.5	229
5	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 2021, 374, 1632-1640.	6.0	369
6	Elucidating the gut microbiota composition and the bioactivity of immunostimulatory commensals for the optimization of immune checkpoint inhibitors. Oncolmmunology, 2020, 9, 1794423.	2.1	7
7	The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science, 2020, 368, 973-980.	6.0	1,077
8	B cells and tertiary lymphoid structures promote immunotherapy response. Nature, 2020, 577, 549-555.	13.7	1,421
9	Combination anti–CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22699-22709.	3.3	226
10	The Rationale and Emerging Use of Neoadjuvant Immune Checkpoint Blockade for Solid Malignancies. Annals of Surgical Oncology, 2018, 25, 1814-1827.	0.7	45
11	Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 2018, 359, 97-103.	6.0	3,126
12	Checkpoint Blockade Reverses Anergy in IL-13Rα2 Humanized scFv-Based CAR T Cells to Treat Murine and Canine Gliomas. Molecular Therapy - Oncolytics, 2018, 11, 20-38.	2.0	123
13	The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends in Immunology, 2018, 39, 900-920.	2.9	56
14	Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature, 2018, 558, 307-312.	13.7	574
15	Gene Targeting Meets Cell-Based Therapy: Raising the Tail, or Merely a Whimper?. Clinical Cancer Research, 2017, 23, 327-329.	3.2	1
16	Hallmarks of response to immune checkpoint blockade. British Journal of Cancer, 2017, 117, 1-7.	2.9	194
17	Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. Npj Genomic Medicine, 2017, 2, .	1.7	120
18	Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade. Cell, 2017, 170, 1120-1133.e17.	13.5	960

ALEXANDRIA P COGDILL

#	Article	IF	CITATIONS
19	Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016, 127, 1117-1127.	0.6	381
20	Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity, 2016, 44, 1444-1454.	6.6	458
21	Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma. Science Translational Medicine, 2015, 7, 275ra22.	5.8	369
22	Affinity-Tuned ErbB2 or EGFR Chimeric Antigen Receptor T Cells Exhibit an Increased Therapeutic Index against Tumors in Mice. Cancer Research, 2015, 75, 3596-3607.	0.4	426
23	BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in Patients with Metastatic Melanoma. Clinical Cancer Research, 2013, 19, 1225-1231.	3.2	832
24	Potential role of 5-Aza-2′-deoxycytidine induced MAGE-A4 expression in immunotherapy for anaplastic thyroid cancer. Surgery, 2013, 154, 1456-1462.	1.0	23
25	EGFR-Mediated Reactivation of MAPK Signaling Contributes to Insensitivity of <i>BRAF</i> -Mutant Colorectal Cancers to RAF Inhibition with Vemurafenib. Cancer Discovery, 2012, 2, 227-235.	7.7	852
26	Targeting the MAGE A3 antigen in pancreatic cancer. Surgery, 2012, 152, S13-S18.	1.0	18
27	COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 2010, 468, 968-972.	13.7	1,325
28	Selective BRAFV600E Inhibition Enhances T-Cell Recognition of Melanoma without Affecting Lymphocyte Function. Cancer Research, 2010, 70, 5213-5219.	0.4	659
29	Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood, 2009, 114, 535-546.	0.6	1,280