List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1876780/publications.pdf Version: 2024-02-01

Κου Δρλι

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
8	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
12	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
13	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
14	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
15	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
16	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
17	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6,	8.9	898
18	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> <!--<br-->stretchy="false">⊙</mml:mtext></mml:mrow>. Physical Review Letters, 2020, 125, 101102.</mml:math 	mml ma text	> <nasadamsub< td=""></nasadamsub<>

#	Article	IF	CITATIONS
19	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
20	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
21	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
22	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
23	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	16.7	716
24	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
25	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
26	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
27	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
28	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
29	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
30	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
31	The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28, 094011.	4.0	456
32	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
33	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
34	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
35	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
36	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394

#	Article	IF	CITATIONS
37	The Japanese space gravitational wave antenna—DECIGO. Classical and Quantum Gravity, 2006, 23, S125-S131.	4.0	388
38	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
39	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	7.8	359
40	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	4.7	338
41	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
42	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 2016, 93, .	4.7	286
43	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
44	Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy. Physical Review Letters, 2001, 86, 3950-3954.	7.8	255
45	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
46	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
47	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
48	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
49	Overview of KAGRA: Detector design and construction history. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	198
50	Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Physical Review D, 2020, 102, .	4.7	196
51	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
52	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	4.7	192
53	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
54	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188

#	Article	IF	CITATIONS
55	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
56	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
57	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
58	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
59	The status of DECIGO. Journal of Physics: Conference Series, 2017, 840, 012010.	0.4	148
60	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
61	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
62	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
63	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
64	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
65	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
66	A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity, 2020, 37, 165003.	4.0	120
67	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
68	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
69	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
70	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107
71	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
72	LARGE-SCALE CRYOGENIC GRAVITATIONAL WAVE TELESCOPE. International Journal of Modern Physics D, 1999, 08, 557-579.	2.1	105

#	Article	IF	CITATIONS
73	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
74	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Physical Review D, 2018, 97, .	4.7	104
75	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
76	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
77	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
78	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
79	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
80	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
81	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
82	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
83	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
84	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
85	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
86	Observation of Parametric Instability in Advanced LIGO. Physical Review Letters, 2015, 114, 161102.	7.8	87
87	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
88	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
89	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
90	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84

#	Article	IF	CITATIONS
91	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
92	Search for a Stochastic Background of 100-MHz Gravitational Waves with Laser Interferometers. Physical Review Letters, 2008, 101, 101101.	7.8	77
93	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
94	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Physical Review D, 2019, 99, .	4.7	77
95	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
96	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
97	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
98	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
99	Space gravitational-wave antennas DECIGO and B-DECIGO. International Journal of Modern Physics D, 2019, 28, 1845001.	2.1	73
100	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	4.7	72
101	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
102	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
103	First search for gravitational waves from inspiraling compact binaries using TAMA300 data. Physical Review D, 2001, 63, .	4.7	70
104	Laser-interferometric detectors for gravitational wave backgrounds at 100ÂMHz: Detector design and sensitivity. Physical Review D, 2008, 77, .	4.7	70
105	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
106	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
107	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
108	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68

#	Article	IF	CITATIONS
109	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
110	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
111	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
112	Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	66
113	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
114	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
115	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
116	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
117	Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. Physical Review Letters, 2020, 124, 171101.	7.8	63
118	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
119	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	4.7	62
120	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
121	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
122	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
123	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
124	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
125	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
126	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59

#	Article	IF	CITATIONS
127	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	12.6	59
128	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
129	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
130	Interferometry for the LISA technology package (LTP) aboard SMART-2. Classical and Quantum Gravity, 2003, 20, S153-S161.	4.0	56
131	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
132	Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Classical and Quantum Gravity, 2014, 31, 245010.	4.0	55
133	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
134	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
135	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
136	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
137	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	4.7	49
138	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
139	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
140	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
141	The Japanese space gravitational wave antenna - DECIGO. Journal of Physics: Conference Series, 2008, 122, 012006.	0.4	46
142	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
143	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
144	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46

#	Article	IF	CITATIONS
145	First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Classical and Quantum Gravity, 2019, 36, 165008.	4.0	45
146	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
147	Present status of large-scale cryogenic gravitational wave telescope. Classical and Quantum Gravity, 2004, 21, S1161-S1172.	4.0	43
148	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43
149	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	4.7	43
150	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
151	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	4.7	42
152	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. Physical Review D, 2006, 73, .	4.7	40
153	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
154	All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. Physical Review D, 2022, 105, .	4.7	40
155	DECIGO and DECIGO pathfinder. Classical and Quantum Gravity, 2010, 27, 084010.	4.0	39
156	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
157	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	4.5	39
158	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001.	4.0	38
159	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
160	Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity. Physical Review D, 2021, 103, .	4.7	37
161	Reduction of Thermal Fluctuations in a Cryogenic Laser Interferometric Gravitational Wave Detector. Physical Review Letters, 2012, 108, 141101.	7.8	36
162	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36

#	Article	IF	CITATIONS
163	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
164	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
165	Operational status of TAMA300 with the seismic attenuation system (SAS). Classical and Quantum Gravity, 2008, 25, 114036.	4.0	34
166	The Japanese space gravitational wave antenna; DECIGO. Journal of Physics: Conference Series, 2008, 120, 032004.	0.4	34
167	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
168	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	33
169	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	4.5	33
170	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32
171	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>i³</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	7.8	32
172	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
173	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	8.3	32
174	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
175	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
176	Overview of KAGRA: KAGRA science. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	31
177	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Physical Review D, 2022, 105, .	4.7	31
178	DECIGO: The Japanese space gravitational wave antenna. Journal of Physics: Conference Series, 2009, 154, 012040.	0.4	30
179	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
180	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	4.7	29

#	Article	IF	CITATIONS
181	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
182	Coherent cancellation of photothermal noise in GaAs/Al _{0.92} Ga _{0.08} As Bragg mirrors. Metrologia, 2016, 53, 860-868.	1.2	29
183	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
184	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
185	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910. Astrophysical Journal, 2021, 922, 71.	4.5	29
186	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
187	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	4.7	27
188	Gravitational wave astronomy: the current status. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	26
189	Passive, free-space heterodyne laser gyroscope. Classical and Quantum Gravity, 2016, 33, 035004.	4.0	26
190	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
191	Status of Japanese gravitational wave detectors. Classical and Quantum Gravity, 2009, 26, 204020.	4.0	25
192	Residual amplitude modulation in interferometric gravitational wave detectors. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 81.	1.5	25
193	Improvement of the vibration isolation system for TAMA300. Classical and Quantum Gravity, 2002, 19, 1599-1604.	4.0	24
194	Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses. Physical Review D, 2005, 71, .	4.7	24
195	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	7.8	24
196	Point absorbers in Advanced LIGO. Applied Optics, 2021, 60, 4047.	1.8	24
197	Focussing DIRC — A new compact Cherenkov ring imaging device. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 382, 430-440.	1.6	22
198	Vacuum-compatible vibration isolation stack for an interferometric gravitational wave detector TAMA300. Review of Scientific Instruments, 2002, 73, 2428-2433.	1.3	22

#	Article	IF	CITATIONS
199	Current status of Japanese detectors. Classical and Quantum Gravity, 2007, 24, S399-S403.	4.0	22
200	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
201	Japanese large-scale interferometers. Classical and Quantum Gravity, 2002, 19, 1237-1245.	4.0	21
202	Current status of large-scale cryogenic gravitational wave telescope. Classical and Quantum Gravity, 2003, 20, S871-S884.	4.0	21
203	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
204	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	4.7	21
205	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
206	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
207	New signal extraction scheme with harmonic demodulation for power-recycled Fabry–Perot–Michelson interferometers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 273, 15-24.	2.1	19
208	Development of a multistage laser frequency stabilization for an interferometric gravitational-wave detector. Review of Scientific Instruments, 2003, 74, 4176-4183.	1.3	19
209	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
210	LIGOâ $€$ ™s quantum response to squeezed states. Physical Review D, 2021, 104, .	4.7	19
211	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	4.7	19
212	DECIGO pathfinder. Classical and Quantum Gravity, 2009, 26, 094019.	4.0	18
213	Multicolor cavity metrology. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 2092.	1.5	18
214	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
215	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	4.7	18
216	Thermal-noise-limited underground interferometer CLIO. Classical and Quantum Gravity, 2010, 27, 084022.	4.0	17

#	Article	IF	CITATIONS
217	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
218	Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data. Physical Review D, 2004, 70, .	4.7	16
219	Quantum correlation measurements in interferometric gravitational-wave detectors. Physical Review A, 2017, 95, .	2.5	16
220	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	4.5	15
221	Sensing and controls for power-recycling of TAMA300. Classical and Quantum Gravity, 2002, 19, 1843-1848.	4.0	14
222	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
223	Demonstration of power recycling on a Fabry-Perot-type prototype gravitational wave detector. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 248, 145-150.	2.1	13
224	Measurement of optical losses in a high-finesse 300Âm filter cavity for broadband quantum noise reduction in gravitational-wave detectors. Physical Review D, 2018, 98, .	4.7	13
225	Recent progress of TAMA300. Journal of Physics: Conference Series, 2008, 120, 032010.	0.4	12
226	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
227	Direct measurement of residual gas effect on the sensitivity in TAMA300. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1237-1241.	2.1	11
228	Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000–2004. Physical Review D, 2006, 74, .	4.7	11
229	Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour. Applied Optics, 2009, 48, 6105.	2.1	11
230	Improving the robustness of the advanced LIGO detectors to earthquakes. Classical and Quantum Gravity, 2020, 37, 235007.	4.0	11
231	Development of a light source with an injection-locked Nd:YAG laser and a ring-mode cleaner for the TAMA 300 gravitational-wave detector. Review of Scientific Instruments, 2002, 73, 2136-2142.	1.3	10
232	Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors. Applied Optics, 2005, 44, 3179.	2.1	9
233	Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA. Classical and Quantum Gravity, 2019, 36, 095015.	4.0	9
234	Methods to characterize non-Gaussian noise in TAMA. Classical and Quantum Gravity, 2003, 20, S697-S709.	4.0	8

#	Article	IF	CITATIONS
235	Upper limits on gravitational-wave bursts radiated from stellar-core collapses in our galaxy. Classical and Quantum Gravity, 2005, 22, S1283-S1291.	4.0	8
236	Optimal location of two laser-interferometric detectors for gravitational wave backgrounds at 100 MHz. Classical and Quantum Gravity, 2008, 25, 225011.	4.0	8
237	Technique for inÂsitu measurement of free spectral range and transverse mode spacing of optical cavities. Applied Optics, 2012, 51, 6571.	1.8	8
238	Broadband measurement of coating thermal noise in rigid Fabry–Pérot cavities. Metrologia, 2015, 52, 17-30.	1.2	8
239	Direct measurement of the scattered light effect on the sensitivity in TAMA300. Physical Review D, 2004, 70, .	4.7	7
240	Application of independent component analysis to the iKAGRA data. Progress of Theoretical and Experimental Physics, 2020, 2020, .	6.6	7
241	Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. Classical and Quantum Gravity, 2021, 38, 065011.	4.0	7
242	Signal-separation experiments for a power-recycled Fabry–Perot–Michelson interferometer by sideband elimination. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 268, 268-273.	2.1	6
243	Analysis methods for burst gravitational waves with TAMA data. Classical and Quantum Gravity, 2004, 21, S1679-S1684.	4.0	6
244	Effects of transients in LIGO suspensions on searches for gravitational waves. Review of Scientific Instruments, 2017, 88, 124501.	1.3	6
245	DECIGO pathfinder. Journal of Physics: Conference Series, 2008, 120, 032005.	0.4	5
246	<i>In situ</i> characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances. Classical and Quantum Gravity, 2015, 32, 135018.	4.0	5
247	An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime. Review of Scientific Instruments, 2016, 87, 065107.	1.3	5
248	Evaluation of the performance of polished mirror surfaces for the TAMA gravitational wave detector by use of a wave-front tracing simulation. Applied Optics, 2002, 41, 5913.	2.1	4
249	Analysis for burst gravitational waves with TAMA300 data. Classical and Quantum Gravity, 2004, 21, S735-S740.	4.0	4
250	Silicon emissivity as a function of temperature. International Journal of Heat and Mass Transfer, 2020, 157, 119863.	4.8	4
251	Point Absorber Limits to Future Gravitational-Wave Detectors. Physical Review Letters, 2021, 127, 241102.	7.8	3
252	Guided lock of a suspended optical cavity enhanced by a higher-order extrapolation. Applied Optics, 2017, 56, 5470.	2.1	2

#	Article	IF	CITATIONS
253	External quantum efficiency enhancement by photon recycling with backscatter evasion. Applied Optics, 2018, 57, 3372.	1.8	2
254	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
255	Improving the stability of frequency-dependent squeezing with bichromatic control of filter cavity length, alignment, and incident beam pointing. Physical Review D, 2022, 105, .	4.7	2
256	Online monitoring of alignment noises in TAMA300. Journal of Physics: Conference Series, 2006, 32, 94-98.	0.4	1
257	Radiative Cooling of the Thermally Isolated System in KAGRA Gravitational Wave Telescope. Journal of Physics: Conference Series, 2021, 1857, 012002.	0.4	1
258	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
259	Evaluation of the performance of polished mirror surfaces for the TAMA gravitational wave detector by use of a wave-front tracing simulation: erratum. Applied Optics, 2003, 42, 1306.	2.1	0
260	Analysis of the laser noise propagation mechanism on the laser interferometer gravitational wave antenna. Journal of Physics: Conference Series, 2006, 32, 74-79.	0.4	0
261	Influence of radio frequency harmonics to TAMA300 sensitivity. Journal of Physics: Conference Series, 2006, 32, 99-104.	0.4	0
262	Contributions of oscillator noises to the sensitivity of TAMA300. Journal of Physics: Conference Series, 2006, 32, 105-110.	0.4	0
263	Laser interferometric high-precision geometry (angle and length) monitor for JASMINE. Proceedings of the International Astronomical Union, 2007, 3, 280-281.	0.0	0
264	Development of laser interferometric high-precision geometry monitor for JASMINE. Proceedings of SPIE, 2008, , .	0.8	0