Paola Ceroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1876429/publications.pdf

Version: 2024-02-01

228 papers

9,747 citations

54 h-index 49909 87 g-index

254 all docs

254 docs citations

254 times ranked

10064 citing authors

#	Article	IF	CITATIONS
1	Moving Beyond Cyanoarene Thermally Activated Delayed Fluorescence Compounds as Photocatalysts: An Assessment of the Performance of a Pyrimidyl Sulfone Photocatalyst in Comparison to 4CzIPN. Journal of Organic Chemistry, 2023, 88, 6364-6373.	3.2	16
2	Nickel $\hat{a}\in M$ ediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	13.8	32
3	Boosting Gold(I) Catalysis via Weak Interactions: New Fine-Tunable Impy Ligands. ACS Organic & Inorganic Au, 2022, 2, 229-235.	4.0	6
4	Effect of the iodine atom position on the phosphorescence of BODIPY derivatives: a combined computational and experimental study. Photochemical and Photobiological Sciences, 2022, 21, 777-786.	2.9	7
5	Tetrachromophoric Systems Based On Rigid Tetraphenylmethane (TPM) and Tetraphenylethylene (TPE) Scaffolds. ChemPlusChem, 2022, , e202100558.	2.8	4
6	Light-harvesting antennae based on copper indium sulfide (CIS) quantum dots. Nanoscale, 2022, 14, 3013-3019.	5 . 6	4
7	Acceleration of oxidation promoted by laccase irradiation with red light. New Journal of Chemistry, 2022, 46, 8662-8668.	2.8	1
8	A Photoredox Nozakiâ€Hiyama Reaction Catalytic in Chromium. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
9	Persulfurated Benzeneâ€Cored Asterisks with Ï€â€Extended ThioNaphthyl Arms: Synthesis, Structural, Photophysical and Covalent Dynamic Properties. Chemistry - A European Journal, 2022, , .	3.3	1
10	Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chemical Science, 2022, 13, 5973-5981.	7.4	26
11	Dual Photoredox and Nickel Catalysed Reductive Coupling of Alkynes and Aldehydes. Advanced Synthesis and Catalysis, 2022, 364, 3410-3419.	4.3	7
12	Tailored Coumarin Dyes for Photoredox Catalysis: Calculation, Synthesis, and Electronic Properties. ChemCatChem, 2021, 13, 981-989.	3.7	10
13	Catalytic Photoredox Allylation of Aldehydes Promoted by a Cobalt Complex. Advanced Synthesis and Catalysis, 2021, 363, 1105-1111.	4. 3	27
14	Trap-State-Induced Becquerel Type of Photoluminescence Decay in DPA-Activated Silicon Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 2055-2063.	3.1	2
15	Metallaphotoredox catalysis with organic dyes. Organic and Biomolecular Chemistry, 2021, 19, 3527-3550.	2.8	44
16	Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. Nanoscale Horizons, 2021, 6, 676-695.	8.0	24
17	Luminescent silicon nanocrystals appended with photoswitchable azobenzene units. Nanoscale, 2021, 13, 12460-12465.	5. 6	5
18	Silicon Nanocrystals Functionalized with Photoactive Units for Dual-Potential Electrochemiluminescence. Journal of Physical Chemistry C, 2021, 125, 5708-5714.	3.1	3

#	Article	IF	CITATIONS
19	Ruthenium tris(bipyridine) complexes: Interchange between photons and electrons in molecular-scale devices and machines. Coordination Chemistry Reviews, 2021, 433, 213758.	18.8	35
20	Giant Shapeâ€persistent Tetrahedral Porphyrin System: Lightâ€induced Charge Separation. Chemistry - A European Journal, 2021, 27, 16250-16259.	3.3	4
21	Synthesis, Structure, Photophysics, and Singlet Oxygen Sensitization by a Platinum(II) Complex of <i>Meso</i> â€Tetraâ€Acenaphthyl Porphyrin. European Journal of Inorganic Chemistry, 2021, 2021, 4089-4095.	2.0	8
22	Design of BODIPY dyes as triplet photosensitizers: electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chemical Science, 2021, 12, 6607-6628.	7.4	155
23	Understanding the mechanism of direct visible-light-activated [2 + 2] cycloadditions mediated by Rh and Ir photocatalysts: combined computational and spectroscopic studies. Chemical Science, 2021, 12, 9673-9681.	7.4	16
24	Aluminum(III) Salen Complexes as Active Photoredox Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1486-1490.	2.4	24
25	A supramolecular bifunctional iridium photoaminocatalyst for the enantioselective alkylation of aldehydes. Dalton Transactions, 2020, 49, 14497-14505.	3.3	4
26	Silicon nanostructures for sensing and bioimaging: general discussion. Faraday Discussions, 2020, 222, 384-389.	3.2	1
27	Synthesis and functionalisation of silicon nanostructures: general discussion. Faraday Discussions, 2020, 222, 166-175.	3.2	0
28	Luminescent silicon nanostructures and COVID-19. Faraday Discussions, 2020, 222, 8-9.	3.2	3
29	Water-soluble silicon nanocrystals as NIR luminescent probes for time-gated biomedical imaging. Nanoscale, 2020, 12, 7921-7926.	5.6	20
30	Highly Emissive Waterâ€Soluble Polysulfurated Pyreneâ€Based Chromophores as Dual Mode Sensors of Metal Ions. ChemPlusChem, 2020, 85, 1481-1486.	2.8	3
31	Amine functionalised silicon nanocrystals with bright red and long-lived emission. Faraday Discussions, 2020, 222, 108-121.	3.2	7
32	Pentasulfurated benzene-cored asterisks: relationship between crystal structure and luminescence properties. New Journal of Chemistry, 2020, 44, 3249-3254.	2.8	7
33	Hybrid Silicon Nanocrystals for Color-Neutral and Transparent Luminescent Solar Concentrators. ACS Photonics, 2019, 6, 2303-2311.	6.6	63
34	Photocontrolled self-assembly of azobenzene nanocontainers in water: light-triggered uptake and release of lipophilic molecules. Chemical Communications, 2019, 55, 11860-11863.	4.1	8
35	Allylation of aldehydes by dual photoredox and nickel catalysis. Chemical Communications, 2019, 55, 6838-6841.	4.1	40
36	Mercaptosilane-Passivated CulnS2 Quantum Dots for Luminescence Thermometry and Luminescent Labels. ACS Applied Nano Materials, 2019, 2, 2426-2436.	5.0	26

#	Article	IF	Citations
37	A turn-on phosphorescent sensor of Pb ²⁺ in water by the formation of a coordination polymer. Dalton Transactions, 2019, 48, 3815-3818.	3.3	23
38	One- and two-photon absorption properties of quadrupolar thiophene-based dyes with acceptors of varying strengths. Photochemical and Photobiological Sciences, 2019, 18, 2180-2190.	2.9	16
39	Bright Phosphorescence of All-Organic Chromophores Confined within Water-Soluble Silica Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 29884-29890.	3.1	16
40	Other Nitrogen Heterocycles: Carbazoles, Imides and PDI, mpg-C ₃ N ₄ , Tetrazines, Riboflavin, and BODIPY. Catalytic Science Series, 2019, , 423-469.	0.0	0
41	Colloidally stable silicon quantum dots as temperature biosensors., 2019,,.		0
42	Mechanistic insights into two-photon-driven photocatalysis in organic synthesis. Physical Chemistry Chemical Physics, 2018, 20, 8071-8076.	2.8	69
43	Controlled Functionalization of Reduced Graphene Oxide Enabled by Microfluidic Reactors. Chemistry of Materials, 2018, 30, 2905-2914.	6.7	8
44	Asymmetric [3+2] Photocycloadditions of Cyclopropanes with Alkenes or Alkynes through Visible‣ight Excitation of Catalystâ€Bound Substrates. Angewandte Chemie, 2018, 130, 5552-5556.	2.0	24
45	Asymmetric [3+2] Photocycloadditions of Cyclopropanes with Alkenes or Alkynes through Visibleâ€Light Excitation of Catalystâ€Bound Substrates. Angewandte Chemie - International Edition, 2018, 57, 5454-5458.	13.8	110
46	Dendronised diazapyrenium derivatives: host–guest complexes in aqueous solution. New Journal of Chemistry, 2018, 42, 16193-16199.	2.8	1
47	Application of coumarin dyes for organic photoredox catalysis. Chemical Communications, 2018, 54, 10044-10047.	4.1	64
48	Metal complexes and nanoparticles for energy upconversion. Dalton Transactions, 2018, 47, 8507-8508.	3.3	2
49	Aggregation induced phosphorescence of metal complexes: From principles to applications. Coordination Chemistry Reviews, 2017, 346, 62-76.	18.8	154
50	Rigidification or interaction-induced phosphorescence of organic molecules. Chemical Communications, 2017, 53, 2081-2093.	4.1	298
51	Hierarchical Growth of Supramolecular Structures Driven by Pimerization of Tetrahedrally Arranged Bipyridinium Units. Chemistry - A European Journal, 2017, 23, 6380-6390.	3.3	14
52	Bright Long-Lived Luminescence of Silicon Nanocrystals Sensitized by Two-Photon Absorbing Antenna. CheM, 2017, 2, 550-560.	11.7	25
53	Tailoring Colors by O Annulation of Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2017, 23, 2363-2378.	3.3	55
54	Photocatalytic ATRA reaction promoted by iodo-Bodipy and sodium ascorbate. Chemical Communications, 2017, 53, 1591-1594.	4.1	79

#	Article	lF	Citations
55	Long-lived luminescence of silicon nanocrystals: from principles to applications. Physical Chemistry Chemical Physics, 2017, 19, 26507-26526.	2.8	53
56	Photoredox Catalysis: The Need to Elucidate the Photochemical Mechanism. Angewandte Chemie - International Edition, 2017, 56, 12820-12821.	13.8	66
57	Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 23240-23248.	3.1	104
58	Photoredox Catalysis: The Need to Elucidate the Photochemical Mechanism. Angewandte Chemie, 2017, 129, 12996-12997.	2.0	23
59	Photochemistry and photocatalysis. Rendiconti Lincei, 2017, 28, 125-142.	2.2	33
60	Electrochemically Controlled Supramolecular Switches and Machines., 2017,, 343-368.		3
61	Photoinduced Electron-Transfer Quenching of Luminescent Silicon Nanocrystals as a Way To Estimate the Position of the Conduction and Valence Bands by Marcus Theory. Chemistry of Materials, 2016, 28, 6664-6671.	6.7	21
62	Structural and Spectroscopic Properties of New Chiral Quinoline-based Ln(III) Complexes. ChemistrySelect, 2016, 1, 1996-2003.	1.5	9
63	Light-Harvesting Antennae Based on Silicon Nanocrystals. Topics in Current Chemistry, 2016, 374, 53.	5.8	12
64	Photophysical Characterization and Recognition Behaviour of a Bis(dansylated) Polyoxometalate. European Journal of Inorganic Chemistry, 2016, 2016, 3405-3410.	2.0	7
65	Design of Phosphorescent Organic Molecules: Old Concepts under a New Light. CheM, 2016, 1, 524-526.	11.7	27
66	Visible‣ightâ€Induced Direct Photocatalytic Carboxylation of Indoles with CBr ₄ /MeOH. Chemistry - A European Journal, 2015, 21, 18052-18056.	3.3	39
67	Light: A Very Peculiar Reactant and Product. Angewandte Chemie - International Edition, 2015, 54, 11320-11337.	13.8	106
68	Photoinduced Processes between Pyrene-Functionalized Silicon Nanocrystals and Carbon Allotropes. Chemistry of Materials, 2015, 27, 4390-4397.	6.7	25
69	Molecular Size and Electronic Structure Combined Effects on the Electrogenerated Chemiluminescence of Sulfurated Pyreneâ€Cored Dendrimers. Chemistry - A European Journal, 2015, 21, 2936-2947.	3.3	31
70	Uniform Functionalization of High-Quality Graphene with Platinum Nanoparticles for Electrocatalytic Water Reduction. ChemistryOpen, 2015, 4, 268-273.	1.9	12
71	Pseudopeptide Foldamers designed for photoinduced intramolecular electron transfer. RSC Advances, 2015, 5, 10809-10815.	3.6	2
72	Heteroleptic Ru(II)-terpyridine complex and its metal-containing conducting polymer: Synthesis and characterization. Synthetic Metals, 2015, 200, 109-116.	3.9	5

#	Article	IF	CITATIONS
73	Lanthanide Terpyridineâ€Based Assemblies: Towards Dual Luminescent Probes. Asian Journal of Organic Chemistry, 2015, 4, 251-255.	2.7	3
74	Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nature Chemistry, 2015, 7, 634-640.	13.6	229
75	Light-harvesting antennae based on photoactive silicon nanocrystals functionalized with porphyrin chromophores. Faraday Discussions, 2015, 185, 481-495.	3.2	27
76	Influence of the Synthetic Procedures on the Structural and Optical Properties of Mixed-Halide (Br, I) Perovskite Films. Journal of Physical Chemistry C, 2015, 119, 21304-21313.	3.1	71
77	Organocatalytic Enantioselective Alkylation of Aldehydes with [Fe(bpy) ₃]Br ₂ Catalyst and Visible Light. ACS Catalysis, 2015, 5, 5927-5931.	11.2	148
78	NIR-emissive iridium(<scp>iii</scp>) corrole complexes as efficient singlet oxygen sensitizers. Dalton Transactions, 2015, 44, 17767-17773.	3.3	41
79	Natural and artificial photosynthesis: general discussion. Faraday Discussions, 2015, 185, 187-217.	3.2	3
80	Luminescence sensing and imaging: general discussion. Faraday Discussions, 2015, 185, 311-335.	3.2	2
81	Self-organization of photo-active nanostructures: general discussion. Faraday Discussions, 2015, 185, 529-548.	3.2	2
82	Synthesis, Stability and Sensitised Lanthanide Luminescence of Heterobimetallic d/f Terpyridine Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 414-420.	2.0	14
83	Synthesis and solid-state fluorescence properties of pentacyclic 7-substituted-indeno [$1\hat{a}\in^2$, $2\hat{a}\in^2$:4,5] pyrido [2,1-a] isoindol-5-ones. RSC Advances, 2015, 5, 2715-2723.	3.6	5
84	Synthesis of a Covalent Monolayer Sheet by Photochemical Anthracene Dimerization at the Air/Water Interface and its Mechanical Characterization by AFM Indentation. Advanced Materials, 2014, 26, 2052-2058.	21.0	147
85	Bispidines for Dual Imaging. Chemistry - A European Journal, 2014, 20, 17011-17018.	3.3	31
86	Light to investigate (read) and operate (write) molecular devices and machines. Chemical Society Reviews, 2014, 43, 4068-4083.	38.1	123
87	A Highly Luminescent Tetramer from a Weakly Emitting Monomer: Acid―and Redoxâ€Controlled Multiple Complexation by Cucurbit[7]uril. Chemistry - A European Journal, 2014, 20, 7054-7060.	3.3	12
88	Synthesis and Electronic Properties of 1,2â€Hemisquarimines and Their Encapsulation in a Cucurbit[7]uril Host. Chemistry - A European Journal, 2014, 20, 6412-6420.	3.3	4
89	Luminescent multi-terpyridine ligands: towards 2D polymer formation in solution. Photochemical and Photobiological Sciences, 2014, 13, 997-1004.	2.9	11
90	Turn-on Phosphorescence by Metal Coordination to a Multivalent Terpyridine Ligand: A New Paradigm for Luminescent Sensors. Journal of the American Chemical Society, 2014, 136, 6395-6400.	13.7	223

#	Article	IF	Citations
91	Blue and highly emitting [Ir(iv)] complexes by an efficient photoreaction of yellow luminescent [Ir(iii)] complexes. Journal of Materials Chemistry C, 2014, 2, 4461.	5.5	7
92	Synthesis of Two-Dimensional Analogues of Copolymers by Site-to-Site Transmetalation of Organometallic Monolayer Sheets. Journal of the American Chemical Society, 2014, 136, 6103-6110.	13.7	128
93	Synthesis, Characterization, and Metal Ion Coordination of a Multichromophoric Highly Luminescent Polysulfurated Pyrene. Chemistry - A European Journal, 2014, 20, 10661-10668.	3.3	15
94	A tailored RAFT copolymer for the dispersion of single walled carbon nanotubes in aqueous media. Polymer Chemistry, 2014, 5, 6148-6150.	3.9	11
95	Silicon Nanocrystals Functionalized with Pyrene Units: Efficient Light-Harvesting Antennae with Bright Near-Infrared Emission. Journal of Physical Chemistry Letters, 2014, 5, 3325-3329.	4.6	54
96	Molecular asterisks with a persulfurated benzene core are among the strongest organic phosphorescent emitters in the solid state. Dyes and Pigments, 2014, 110, 113-122.	3.7	76
97	Photoactive Dendrimer for Water Photoreduction: A Scaffold to Combine Sensitizers and Catalysts. Journal of Physical Chemistry Letters, 2014, 5, 798-803.	4.6	20
98	Review of the results of the in vivo dosimetry during total skin electron beam therapy. Reports of Practical Oncology and Radiotherapy, 2014, 19, 144-150.	0.6	22
99	A Strongly Emitting Liquidâ€Crystalline Derivative of Y ₃ N@C ₈₀ : Bright and Longâ€Lived Nearâ€IR Luminescence from a Charge Transfer State. Angewandte Chemie - International Edition, 2013, 52, 12303-12307.	13.8	21
100	Self-assembly of nanocrystalline tetra-terpyridine complexes: from molecules to mesoscopic objects. Soft Matter, 2013, 9, 10754.	2.7	11
101	A persulfurated benzene molecule exhibits outstanding phosphorescence in rigid environments: from computational study to organic nanocrystals and OLED applications. Journal of Materials Chemistry C, 2013, 1, 2717.	5.5	118
102	A comparison of sensitized Ln(<scp>iii</scp>) emission using pyridine- and pyrazine-2,6-dicarboxylates – part II. Dalton Transactions, 2013, 42, 2075-2083.	3.3	20
103	Dendrimers as Nd ³⁺ ligands: Effect of Generation on the Efficiency of the Sensitized Lanthanide Emission. Chemistry - an Asian Journal, 2013, 8, 771-777.	3.3	18
104	Highly Fluorescent, Ï€â€Extended Indenopyrido[2,1â€ <i>a</i>]isoindolone Derivatives Prepared by a Palladiumâ€Catalysed Cascade Reaction. European Journal of Organic Chemistry, 2013, 2013, 2316-2324.	2.4	16
105	Multifunctional switching of a photo- and electro-chemiluminescent iridium–dithienylethene complex. Chemical Communications, 2012, 48, 8652.	4.1	42
106	Diazapyrenium cored dendrimers: electron poor guests for a molecular cliphost. New Journal of Chemistry, 2012, 36, 354-359.	2.8	4
107	Photoswitchable Metal Coordinating Tweezers Operated by Light-Harvesting Dendrimers. Journal of the American Chemical Society, 2012, 134, 15277-15280.	13.7	59
108	Amideâ€Functionalized Bis(NHC) Systems: Anion Effect on Gold–Gold Interactions. European Journal of Inorganic Chemistry, 2012, 2012, 3892-3898.	2.0	23

#	Article	IF	CITATIONS
109	Easy Separation of î" and î Isomers of Highly Luminescent [Ir ^{III}]â€Cyclometalated Complexes Based on Chiral Phenolâ€Oxazoline Ancillary Ligands. Chemistry - A European Journal, 2012, 18, 8765-8773.	3.3	61
110	Anion Sensing in Aqueous Media by Photoâ€active Transitionâ€Metal Bipyridyl Rotaxanes. Chemistry - A European Journal, 2012, 18, 11277-11283.	3.3	50
111	Lightâ€Harvesting in Multichromophoric Rotaxanes. Chemistry - A European Journal, 2012, 18, 1528-1535.	3.3	28
112	Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study. Photochemical and Photobiological Sciences, 2011, 10, 1056-1065.	2.9	37
113	A multichromophoric dendrimer: from synthesis to energy up-conversion in a rigid matrix. Chemical Communications, 2011, 47, 12780.	4.1	50
114	A molecular clip throws new light on the complexes formed by a family of cyclam-cored dendrimers with Zn(<scp>ii</scp>) ions. Efficient energy transfer in the heteroleptic complexes. Dalton Transactions, 2011, 40, 1356-1364.	3.3	8
115	Ru2+ complexes comprising terpyridine ligands appended with terthiophene chromophores: energy transfer and energy reservoir effect. Chemical Communications, 2011, 47, 3413.	4.1	17
116	1245 poster FINE VS COARSE MVCT: EVALUATION OF INTER-FRACTION ERRORS IN PATIENTS TREATED WITH TOMOTHERAPY®. Radiotherapy and Oncology, 2011, 99, S463-S464.	0.6	0
117	1233 poster AUTOMATIC +/Ⱂ MANUAL CORRECTION FOR INTER-FRACTION ERRORS DETECTION IN PATIENTS TREATED WITH TOMOTHERAPY®. Radiotherapy and Oncology, 2011, 99, S459-S460.	0.6	0
118	1264 poster 4D CT-BASED PTV DEFINITION FOR LUNG TUMOURS: COMPARISON WITH CONVENTIONAL 3D-CRT USING INDIVIDUAL MARGINS. Radiotherapy and Oncology, 2011, 99, S471.	0.6	1
119	Photoactive and Electroactive Dendrimers: Future Trends and Applications. Australian Journal of Chemistry, 2011, 64, 131.	0.9	12
120	Photochemistry and photophysics of metal complexes with dendritic ligands. Advances in Inorganic Chemistry, 2011, , 105-135.	1.0	10
121	Metal ion complexes of cyclam-cored dendrimers for molecular photonics. Coordination Chemistry Reviews, 2011, 255, 2458-2468.	18.8	33
122	Designing light harvesting antennas by luminescent dendrimers. New Journal of Chemistry, 2011, 35, 1944.	2.8	71
123	Shapeâ€Persistent Macrocycles as Ligands and Sensitisers of Nd ³⁺ Ions. European Journal of Inorganic Chemistry, 2011, 2011, 1479-1486.	2.0	5
124	Terthiophene Appended with Terpyridine Units as Receptors for Protons and Zn2+ Ions: Photoinduced Energy and Electron Transfer Processes. European Journal of Inorganic Chemistry, 2011, 2011, 4590-4595.	2.0	9
125	Energy Upâ€Conversion by Lowâ€Power Excitation: New Applications of an Old Concept. Chemistry - A European Journal, 2011, 17, 9560-9564.	3.3	160
126	Cyclamâ€Cored Dendrimers Appended with Four Dendrons of Two Different Types: Intradendrimer Energy Transfer. Chemistry - an Asian Journal, 2010, 5, 1884-1895.	3.3	8

#	Article	IF	Citations
127	Light-powered molecular devices and machines. Photochemical and Photobiological Sciences, 2010, 9, 1561-1573.	2.9	49
128	A Lightâ∈Harvesting Antenna Resulting from the Selfâ∈Assembly of Five Luminescent Components: A Dendrimer, Two Clips, and Two Lanthanide Ions. Chemistry - A European Journal, 2010, 16, 6048-6055.	3.3	40
129	Luminescent Dendrimers as Ligands and Sensors of Metal lons. Springer Series on Fluorescence, 2010, , 253-284.	0.8	10
130	Metal ion driven formation of a light-harvesting antenna investigated by sensitized luminescence and fluorescence anisotropy. Chemical Communications, 2010, 46, 3571.	4.1	12
131	Adducts between Dansylated Poly(propylene amine) Dendrimers and Anthracene Clips Mediated by Zn ^{II} Ions: Highly Efficient Photoinduced Energy Transfer. Chemistry - A European Journal, 2009, 15, 7876-7882.	3.3	16
132	Dendrimers with a Pentaphenylene Core: A Photophysical Study. ChemPhysChem, 2009, 10, 265-269.	2.1	5
133	A Chemical System that Mimics Decoding Operations. ChemPhysChem, 2009, 10, 495-498.	2.1	19
134	Old Molecules, New Concepts: [Ru(bpy) ₃] ²⁺ as a Molecular Encoder–Decoder. Angewandte Chemie - International Edition, 2009, 48, 8516-8518.	13.8	132
135	Tweezering the Core of Dendrimers: Medium Effect on the Kinetic and Thermodynamic Properties. Journal of Organic Chemistry, 2009, 74, 7335-7343.	3.2	12
136	Fluorescent water-soluble molecular clips. Self-association and formation of adducts in aqueous and methanol solutions. New Journal of Chemistry, 2009, 33, 397-407.	2.8	24
137	Light-powered Molecular Devices and Machines. , 2009, , 131-158.		3
138	From the photochemistry of coordination compounds to light-powered nanoscale devices and machines. Coordination Chemistry Reviews, 2008, 252, 2456-2469.	18.8	109
139	Azacrown Ethers with Naphthyl Branches. Fluorescence Properties, Protonation and Metal Coordination. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 189-194.	3.7	7
140	Polyviologen Dendrimers as Hosts and Chargeâ€Storing Devices. Chemistry - A European Journal, 2008, 14, 8365-8373.	3.3	53
141	Polysulfurated Pyreneâ€Cored Dendrimers: Luminescent and Electrochromic Properties. Chemistry - A European Journal, 2008, 14, 10357-10363.	3.3	65
142	Shapeâ€Persistent Macrocycles Functionalised with Coumarin Dyes: Acidâ€Controlled Energy―and Electronâ€Transfer Processes. Chemistry - A European Journal, 2008, 14, 10772-10781.	3.3	11
143	Selfâ€Assembly of a Lightâ€Harvesting Antenna Formed by a Dendrimer, a Ru ^{II} Complex, and a Nd ^{III} Ion. Angewandte Chemie - International Edition, 2008, 47, 5422-5425.	13.8	79
144	A fluorescent guest encapsulated by a photoreactive azobenzene dendrimer. New Journal of Chemistry, 2008, 32, 401.	2.8	28

#	Article	IF	Citations
145	Synthesis and electronic properties of fullerene derivatives substituted with oligophenylenevinylen–ferrocene conjugates. New Journal of Chemistry, 2008, 32, 54-64.	2.8	18
146	Molecular Clips with Extended Aromatic Sidewalls as Receptors for Electron-Acceptor Molecules. Synthesis and NMR, Photophysical, and Electrochemical Properties. Journal of Organic Chemistry, 2008, 73, 5839-5851.	3.2	46
147	Mechanisms for Fluorescence Depolarization in Dendrimersâ€. Journal of Physical Chemistry B, 2007, 111, 6620-6627.	2.6	20
148	Synthesis of small gold nanoparticles: Au(i) disproportionation catalyzed by a persulfurated coronene dendrimer. Chemical Communications, 2007, , 4167.	4.1	27
149	Photophysical, photochemical, and electrochemical properties of dendrimers with a dimethoxybenzil core. New Journal of Chemistry, 2007, 31, 1250.	2.8	10
150	First generation TREN dendrimers functionalized with naphthyl and/or dansyl units. Ground and excited state electronic interactions and protonation effects. Photochemical and Photobiological Sciences, 2007, 6, 471-479.	2.9	14
151	Photoswitchable Dendritic Hosts:Â A Dendrimer with Peripheral Azobenzene Groups. Journal of the American Chemical Society, 2007, 129, 10714-10719.	13.7	128
152	Phosphinoâ€Aminothiazoline Platinum(II) and Platinum(II)/Gold(I) Complexes: Structural, Chemical and Vapoluminescent Properties. Chemistry - A European Journal, 2007, 13, 10117-10128.	3.3	34
153	Molecular Photochemionics. Advanced Functional Materials, 2007, 17, 740-750.	14.9	58
154	Fullerene Derivatives Substituted with Differently Branched Phenyleneethynylene Dendrons: Synthesis, Electronic and Excited State Properties. European Journal of Organic Chemistry, 2007, 2007, 5899-5908.	2.4	13
155	Electronic spectroscopy of metal complexes with dendritic ligands. Coordination Chemistry Reviews, 2007, 251, 525-535.	18.8	70
156	Cyclam cored luminescent dendrimers as ligands for Co(II), Ni(II) and Cu(II) ions. Inorganica Chimica Acta, 2007, 360, 1043-1051.	2.4	15
157	Heteroleptic Cu(I) complexes containing phenanthroline-type and $1,1\hat{a}\in^2$ -bis(diphenylphosphino)ferrocene ligands: Structure and electronic properties. Inorganica Chimica Acta, 2007, 360, 1032-1042.	2.4	67
158	Hostâ^'Guest Complexes between an Aromatic Molecular Tweezer and Symmetric and Unsymmetric Dendrimers with a 4,4 -Bipyridinium Core. Journal of the American Chemical Society, 2006, 128, 637-648.	13.7	72
159	Ru(II)-bipyridine complexes in supramolecular systems, devices and machines. Coordination Chemistry Reviews, 2006, 250, 1254-1266.	18.8	254
160	Amide-Based Molecular Knots as Platforms for Fluorescent Switches. Chemistry - A European Journal, 2006, 12, 5685-5690.	3.3	23
161	A Cyclam Core Dendrimer Containing Dansyl and Oligoethylene Glycol Chains in the Branches: Protonation and Metal Coordination. Chemistry - A European Journal, 2006, 12, 8926-8934.	3.3	25
162	A Photophysical Study of Terphenyl Core Oligosulfonimide Dendrimers Exhibiting High Steady-State Anisotropy. ChemPhysChem, 2006, 7, 1980-1984.	2.1	10

#	Article	IF	CITATIONS
163	Luminescence as a tool to investigate dendrimer properties. Progress in Polymer Science, 2005, 30, 453-473.	24.7	124
164	A Pentaporphyrin as a Switching Device Activated by Proton and Redox Stimuli. ChemPhysChem, 2005, 6, 2120-2128.	2.1	1
165	Tweezering the Core of a Dendrimer: A Photophysical and Electrochemical Study. Angewandte Chemie - International Edition, 2005, 44, 4574-4578.	13.8	32
166	Dendrimers based on a bis-cyclam core as fluorescence sensors for metal ions. Journal of Materials Chemistry, 2005, 15, 2959.	6.7	36
167	Simple and Dendritic Cyclam Derivatives. Photophysical Properties, Effect of Protonation and Zn2+Coordination, Preliminary Screening as Inhibitors of Tumour Cell Growth. Supramolecular Chemistry, 2004, 16, 541-548.	1.2	10
168	Designing Systems for a Multiple Use of Light Signals. ChemPhysChem, 2004, 5, 315-320.	2.1	16
169	Dendrimers as Ligands: An Investigation into the Stability and Kinetics of Zn2+ Complexation by Dendrimers with 1,4,8,11-Tetraazacyclotetradecane (Cyclam) Cores. Chemistry - A European Journal, 2004, 10, 899-905.	3.3	39
170	Luminescent dendrimers as ligands for metal ions. Journal of Organometallic Chemistry, 2004, 689, 4375-4383.	1.8	28
171	Electronic properties of oligophenylenevinylene and oligophenyleneethynylene arrays constructed on the upper rim of a calix[4]arene core. New Journal of Chemistry, 2004, 28, 1627.	2.8	33
172	Proton-Driven Self-Assembled Systems Based on Cyclam-Cored Dendrimers and [Ru(bpy)(CN)4]2 Journal of the American Chemical Society, 2004, 126, 16466-16471.	13.7	79
173	Forward (singlet–singlet) and backward (triplet–triplet) energy transfer in a dendrimer with peripheral naphthalene units and a benzophenone core. Photochemical and Photobiological Sciences, 2004, 3, 898-905.	2.9	41
174	Cyclam-based dendrimers as ligands for lanthanide ions. Dalton Transactions, 2004, , 1597-1600.	3.3	35
175	Photochemical and photophysical properties of a poly(propylene amine) dendrimer functionalised with E-stilbene units. Organic and Biomolecular Chemistry, 2004, 2, 2207-2213.	2.8	27
176	Complete Charge Pooling is Prevented in Viologen-Based Dendrimers by Self-Protection. Chemistry - A European Journal, 2004, 10, 6361-6368.	3.3	43
177	Molecular devices. Pure and Applied Chemistry, 2004, 76, 1887-1902.	1.9	24
178	Luminescent Dendrimers. Recent Advances. Topics in Current Chemistry, 2003, 228, 159-191.	4.0	125
179	Dendrimers with a Cyclam Core: Absorption Spectra, Multiple Luminescence, and Effect of Protonation ChemInform, 2003, 34, no.	0.0	0
180	Light-harvesting dendrimers. Current Opinion in Chemical Biology, 2003, 7, 657-665.	6.1	187

#	Article	lF	CITATIONS
181	Dendrimers with electroactive units in the core or in each branching centre. Comptes Rendus Chimie, 2003, 6, 935-945.	0.5	7
182	Dendrimers with a cyclam core. Absorption spectra, multiple luminescence, and effect of protonation. Tetrahedron, 2003, 59, 3845-3852.	1.9	72
183	Poly(propylene amine) Dendrimers Decorated with Dimethoxybenzene Units. Photophysical and Electrochemical Properties. Collection of Czechoslovak Chemical Communications, 2003, 68, 1541-1554.	1.0	3
184	Trinuclear Pyrazine-Bridged Ruthenium Complexes:Â Syntheses, Electrochemistry, NIRâ^'Vis Spectra, and Their Interpretation in Terms of a 5-Orbitalâ^'3-Parameter Model. Inorganic Chemistry, 2002, 41, 1263-1271.	4.0	16
185	Luminescent Lanthanide Ions Hosted in a Fluorescent Polylysin Dendrimer. Antenna-Like Sensitization of Visible and Near-Infrared Emission. Journal of the American Chemical Society, 2002, 124, 6461-6468.	13.7	211
186	Photochemical and photophysical properties of poly(propylene amine) dendrimers with peripheral naphthalene and azobenzene groupsElectronic supplementary information (ESI) available: NMR data. See http://www.rsc.org/suppdata/pp/b1/b106813j/. Photochemical and Photobiological Sciences, 2002, 1, 45-51.	2.9	62
187	Photochemical, photophysical and electrochemical properties of six dansyl-based dyadsDedicated to Professor Alex von Zelewsky on the occasion of his 65th birthday New Journal of Chemistry, 2002, 26, 66-75.	2.8	32
188	Title is missing!. Angewandte Chemie, 2002, 114, 3747-3750.	2.0	35
189	Light-Harvesting Dendrimers: Efficient Intra- and Intermolecular Energy-Transfer Processes in a Species Containing 65 Chromophoric Groups of Four Different Types. Angewandte Chemie - International Edition, 2002, 41, 3595-3598.	13.8	190
190	Formation of radical cations and dose response of α-terthiophene-cellulose triacetate films irradiated by electrons and gamma rays. Radiation Physics and Chemistry, 2002, 63, 53-58.	2.8	4
191	Fluorescent guests hosted in fluorescent dendrimers. Tetrahedron, 2002, 58, 629-637.	1.9	120
192	Synthesis and Electronic Properties of Covalent Assemblies of Oligophenylenevinylene Units Arising from a Calix[4]arene Core. Journal of Organic Chemistry, 2001, 66, 6432-6439.	3.2	27
193	A fulleropyrrolidine binitroxide: synthesis, EPR and electrochemical features. Physical Chemistry Chemical Physics, 2001, 3, 3518-3525.	2.8	18
194	Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system. New Journal of Chemistry, 2001, 25, 25-31.	2.8	47
195	Dendrimers with a $4,4\hat{a}\in^2$ -bipyridinium core and electron-donor branches. Electrochemical and spectroscopic properties. New Journal of Chemistry, 2001, 25, 989-993.	2.8	51
196	A fulleropyrrolidine with two oligophenylenevinylene substituents: synthesis, electrochemistry and photophysical properties. International Journal of Photoenergy, 2001, 3, 33-40.	2.5	6
197	A Dendritic Antenna for Near-Infrared Emission of Nd3+ Ions. ChemPhysChem, 2001, 2, 769.	2.1	63
198	A Photosensitizer Dinuclear Ruthenium Complex: Intramolecular Energy Transfer to a Covalently Linked Fullerene Acceptor. Chemistry - A European Journal, 2001, 7, 1597-1605.	3. 3	59

#	Article	IF	Citations
199	Dendrimers based on photoactive metal complexes. Recent advances. Coordination Chemistry Reviews, 2001, 219-221, 545-572.	18.8	229
200	Extensive redox series in dinuclear and dendritic Ru(II) complexes. Electrochimica Acta, 2001, 46, 3199-3206.	5.2	14
201	Identification and Characterization of Redox Sites in Supramolecular Systems and Their Relevance for the Design of Photoactive Devices. Ru(II)/C60-Based Donor-Acceptor Dyads. Collection of Czechoslovak Chemical Communications, 2001, 66, 276-290.	1.0	6
202	Dendrimers Based on Electroactive Metal Complexes. A Review of Recent Advances. Collection of Czechoslovak Chemical Communications, 2001, 66, 1-32.	1.0	42
203	Eosin Molecules Hosted into a Dendrimer Which Carries Thirty-Two Dansyl Units in the Periphery: A Photophysical Study. ChemPhysChem, 2000, 1, 224-227.	2.1	46
204	Electrochemical properties of soluble fullerene derivatives. Electrochimica Acta, 2000, 46, 265-269.	5.2	10
205	Synthesis, electrochemistry, Langmuir–Blodgett deposition and photophysics of metal-coordinated fullerene–porphyrin dyads. Journal of Organometallic Chemistry, 2000, 599, 62-68.	1.8	39
206	Radiochromic properties of α–terthiophene–cellulose triacetate films. Radiation Physics and Chemistry, 2000, 57, 707-710.	2.8	5
207	Effect of protons and metal ions on the fluorescence properties of a polylysin dendrimer containing twenty four dansyl units â€. Dalton Transactions RSC, 2000, , 3765-3771.	2.3	40
208	Dendrimers as fluorescent sensors with signal amplification. Chemical Communications, 2000, , 853-854.	4.1	190
209	Coordination of Co2+lons in the Interior of Poly(propylene amine) Dendrimers Containing Fluorescent Dansyl Units in the Periphery. Journal of the American Chemical Society, 2000, 122, 10398-10404.	13.7	143
210	Novel fulleropyrrolidiniumâ€based materials. Journal of Materials Chemistry, 2000, 10, 269-273.	6.7	24
211	Tempo-C61:Â An Unusual Example of Fulleroid to Methanofullerene Conversion. Journal of Physical Chemistry A, 2000, 104, 156-163.	2.5	29
212	Photoinduced energy transfer in a fullerene–oligophenylenevinylene conjugate. Chemical Communications, 2000, , 599-600.	4.1	83
213	Bottom-up Approach to Nanotechnology: Molecular-Level Devices. , 2000, , 1-21.		1
214	Electrochemical Detection of  C 60 in Solution: Is Tetrahydrofuran a Suitable Solvent for Fullerene Studies?. Journal of the Electrochemical Society, 1999, 146, 3357-3360.	2.9	36
215	Synthesis and photoelectrochemical properties of a fullerene–azothiophene dyad. Journal of Materials Chemistry, 1999, 9, 2743-2750.	6.7	28
216	Poly(Propylene Amine) Dendrimers with Peripheral Dansyl Units:Â Protonation, Absorption Spectra, Photophysical Properties, Intradendrimer Quenching, and Sensitization Processes. Journal of the American Chemical Society, 1999, 121, 12161-12166.	13.7	92

#	Article	IF	CITATIONS
217	Electrochemically Induced Dynamics of a Benzylic Amide [2]Catenane. Journal of Physical Chemistry B, 1999, 103, 10171-10179.	2.6	20
218	Photoinduced Electron Transfer in a Tris(2,2′-bipyridine)-C60-ruthenium(II) Dyad: Evidence of Charge Recombination to a Fullerene Excited State. Chemistry - A European Journal, 1998, 4, 1992-2000.	3.3	106
219	Dinuclear and Dendritic Polynuclear Ruthenium(II) and Osmium(II) Polypyridine Complexes: Electrochemistry at Very Positive Potentials in Liquid SO2. Journal of the American Chemical Society, 1998, 120, 5480-5487.	13.7	69
220	Electrochemistry at Very Positive Potentials in Liquid SO2. Mononuclear Rull and Osll Polypyridine Complexes. Inorganic Chemistry, 1998, 37, 2829-2832.	4.0	19
221	Enhanced Acceptor Character in Fullerene Derivatives. Synthesis and Electrochemical Properties of Fulleropyrrolidinium Salts. Journal of the American Chemical Society, 1998, 120, 11645-11648.	13.7	94
222	Synthesis and properties of novel fullerene derivatives., 1998,,.		0
223	Complexes Containing 2,9-Bis(p-biphenylyl)-1,10-phenanthroline Units Incorporated into a 56-Membered Ring. Synthesis, Electrochemistry, and Photophysical Properties. Inorganic Chemistry, 1997, 36, 5329-5338.	4.0	51
224	Protonation of free 2,9-bis(p-biphenylyl)-1,10-phenanthrolinesites in a 56-membered macrocycle and in its Reland Culcomplexes Absorption spectra, luminescence properties, and excited state interactions. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 4145-4150.	1.7	16
225	Knotted Heterodinuclear Complexes. Angewandte Chemie International Edition in English, 1996, 35, 1119-1121.	4.4	49
226	Nature of the lowest energy excited state of a bis-phenanthroline [2]-catenand and its Cu(I), Ag(I) and Co(II) complexes. Chemical Physics Letters, 1995, 241, 555-558.	2.6	33
227	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie, 0, , .	2.0	8
228	Introduction to <i>Dalton Transactions</i> themed issue – New Talent: Europe (2022). Dalton Transactions, 0, , .	3.3	0