
Fouad Daayf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1874468/publications.pdf Version: 2024-02-01

ΕΩΠΑΡ ΠΑΑΧΕ

#	Article	IF	CITATIONS
1	First Report of Pod and Stem Blight and Seed Decay Caused by <i>Diaporthe longicolla</i> on Soybean in Western Canada. Plant Disease, 2022, 106, 1061.	1.4	3
2	First report of <i>Fusarium sporotrichioides</i> causing root rot of soybean in Canada and detection of the pathogen in host tissues by PCR. Canadian Journal of Plant Pathology, 2021, 43, 527-536.	1.4	4
3	Secretome Analysis of Clavibacter nebraskensis Strains Treated with Natural Xylem Sap In Vitro Predicts Involvement of Glycosyl Hydrolases and Proteases in Bacterial Aggressiveness. Proteomes, 2021, 9, 1.	3.5	9
4	MinION Nanopore-based detection of Clavibacter nebraskensis, the corn Goss's wilt pathogen, and bacteriomic profiling of necrotic lesions of naturally-infected leaf samples. PLoS ONE, 2021, 16, e0245333.	2.5	10
5	Gene Expression of Putative Pathogenicity-Related Genes in Verticillium dahliae in Response to Elicitation with Potato Extracts and during Infection Using Quantitative Real-Time PCR. Pathogens, 2021, 10, 510.	2.8	0
6	Role of Exopolygalacturonase-Related Genes in Potato-Verticillium dahliae Interaction. Pathogens, 2021, 10, 642.	2.8	3
7	Fusarium root rot complex in soybean: Molecular characterization, trichothecene formation and cross-pathogenicity Phytopathology, 2021, , PHYTO03210083R.	2.2	7
8	Overexpression of <i>Solanum tuberosum Respiratory Burst Oxidase Homolog A</i> (<i>StRbohA</i>) Promotes Potato Tolerance to <i>Phytophthora infestans</i> . Phytopathology, 2021, 111, 1410-1419.	2.2	8
9	NOXA Is Important for Verticillium dahliae's Penetration Ability and Virulence. Journal of Fungi (Basel,) Tj ET	Qq1310.78	34314 rgBT /0
10	Naturally Occurring Fusarium Species and Mycotoxins in Oat Grains from Manitoba, Canada. Toxins, 2021, 13, 670.	3.4	12
11	Specific Detection and Identification of <i>Fusarium graminearum</i> Sensu Stricto Using a PCR-RFLP Tool and Specific Primers Targeting the Translational Elongation Factor 11± Gene. Plant Disease, 2020, 104, 1076-1086.	1.4	14
12	Combining Streptomyces hygroscopicus and phosphite boosts soybean's defense responses to Phytophthora sojae. BioControl, 2020, 65, 363-375.	2.0	6
13	Transcriptional Insight Into Brassica napus Resistance Genes LepR3 and Rlm2-Mediated Defense Response Against the Leptosphaeria maculans Infection. Frontiers in Plant Science, 2019, 10, 823.	3.6	13
14	Transcriptome Analysis of <i>Rlm2</i> -Mediated Host Immunity in the <i>Brassica napus</i> – <i>Leptosphaeria maculans</i> Pathosystem. Molecular Plant-Microbe Interactions, 2019, 32, 1001-1012.	2.6	20
15	First Report of Northern Stem Canker Caused by <i>Diaporthe caulivora</i> on Soybean in Western Canada. Plant Disease, 2019, 103, 372-372.	1.4	6
16	Isolation and identification of cultivated bacteria associated with soybeans and their biocontrol activity against Phytophthora sojae. BioControl, 2018, 63, 607-617.	2.0	20
17	Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. Plant Physiology and Biochemistry, 2018, 122, 121-128.	5.8	31
18	Developed and validated inoculation and disease assessment methods for Goss's bacterial wilt and leaf blight disease of corn. Crop Protection, 2018, 112, 159-167.	2.1	12

#	Article	IF	CITATIONS
19	Goss's bacterial wilt and leaf blight of corn in Canada – disease update. Canadian Journal of Plant Pathology, 2018, 40, 471-480.	1.4	14
20	First Report of <i>Fusarium cerealis</i> Causing Root Rot on Soybean. Plant Disease, 2018, 102, 2638.	1.4	13
21	Verticillium dahliae's Isochorismatase Hydrolase Is a Virulence Factor That Contributes to Interference With Potato's Salicylate and Jasmonate Defense Signaling. Frontiers in Plant Science, 2017, 8, 399.	3.6	25
22	Quantitative Trait Loci Mapping and Candidate Gene Identification for Seed Glucosinolates in <i>Brassica rapa</i> L Crop Science, 2016, 56, 942-956.	1.8	4
23	Analyses of genetic diversity of bacterial blight pathogen, Xanthomonas oryzae pv. oryzae using IS1112 in Bangladesh. Comptes Rendus - Biologies, 2016, 339, 399-407.	0.2	13
24	Genome Analysis and Development of a Multiplex TaqMan Real-Time PCR for Specific Identification and Detection of <i>Clavibacter michiganensis</i> subsp. <i>nebraskensis</i> . Phytopathology, 2016, 106, 1473-1485.	2.2	16
25	Pre-treatment with calcium enhanced defense-related genes' expression in the soybean's isoflavones pathway in response to Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 2016, 93, 12-21.	2.5	19
26	Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy- d -xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans. Plant Science, 2016, 243, 71-83.	3.6	53
27	A cupin domain-containing protein with a quercetinase activity (VdQase) regulates Verticillium dahliae's pathogenicity and contributes to counteracting host defenses. Frontiers in Plant Science, 2015, 6, 440.	3.6	23
28	Characterization of <i>Phytophthora infestans</i> populations in Canada during 2012. Canadian Journal of Plant Pathology, 2015, 37, 305-314.	1.4	7
29	Comparative expression of genes controlling cell wall-degrading enzymes in Verticillium dahliae isolates from olive, potato and sunflower. Physiological and Molecular Plant Pathology, 2015, 91, 56-65.	2.5	16
30	Draft Genome Sequence of Clavibacter michiganensis subsp. <i>nebraskensis</i> Strain DOAB 397, Isolated from an Infected Field Corn Plant in Manitoba, Canada. Genome Announcements, 2015, 3, .	0.8	12
31	Overexpression of StRbohA in Arabidopsis thaliana enhances defence responses against Verticillium dahliae. Physiological and Molecular Plant Pathology, 2015, 90, 105-114.	2.5	5
32	Verticillium wilts in crop plants: Pathogen invasion and host defence responses. Canadian Journal of Plant Pathology, 2015, 37, 8-20.	1.4	44
33	Genetic structure of <i>Verticillium dahliae</i> isolates infecting olive trees in Tunisia using <scp>AFLP</scp> , pathogenicity and <scp>PCR</scp> markers. Plant Pathology, 2015, 64, 871-879.	2.4	16
34	The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16, 413-434.	4.2	695
35	The Allelopathic Potential of Hairy Vetch (Vicia villosa Roth.) Mulch. American Journal of Plant Sciences, 2015, 06, 2651-2663.	0.8	11
36	Biochemical and Molecular Characterization of Barley Plastidial ADP-Glucose Transporter (HvBT1). PLoS ONE, 2014, 9, e98524.	2.5	15

#	Article	IF	CITATIONS
37	Characterization of <i>Phytophthora infestans</i> population diversity in Canada reveals increased migration and genotype recombination. Canadian Journal of Plant Pathology, 2014, 36, 73-82.	1.4	25
38	Potato Early Dying and Yield Responses to Compost, Green Manures, Seed Meal and Chemical Treatments. American Journal of Potato Research, 2014, 91, 414-428.	0.9	18
39	Genetic diversity ofVerticillium dahliaefrom olive trees in Tunisia based on RAMS and IGS-RFLP analyses. Canadian Journal of Plant Pathology, 2014, 36, 491-500.	1.4	11
40	Vegetative compatibility of <i>Verticillium dahliae</i> isolates from potato and sunflower using nitrate non-utilizing (<i>nit</i>) mutants and PCR-based approaches. Canadian Journal of Plant Pathology, 2013, 35, 1-9.	1.4	24
41	Differential Expression of Potato Defence Genes Associated with the Salicylic Acid Defence Signalling Pathway in Response to Weakly and Highly Aggressive Isolates of <i>Verticillium dahliae</i> . Journal of Phytopathology, 2013, 161, 142-153.	1.0	31
42	Signaling cross-talk in plant disease resistance. Plant Science, 2013, 207, 79-87.	3.6	252
43	Differential accumulation of phenolic compounds in potato in response to weakly and highly aggressive isolates of <i>Verticillium dahliae</i> . Canadian Journal of Plant Pathology, 2013, 35, 232-240.	1.4	15
44	Homoeologous GSL-ELONG gene replacement for manipulation of aliphatic glucosinolates in Brassica rapa L. by marker assisted selection. Frontiers in Plant Science, 2013, 4, 55.	3.6	11
45	Extreme Resistance as a Host Counter-counter Defense against Viral Suppression of RNA Silencing. PLoS Pathogens, 2013, 9, e1003435.	4.7	43
46	Plants versus Fungi and Oomycetes: Pathogenesis, Defense and Counter-Defense in the Proteomics Era. International Journal of Molecular Sciences, 2012, 13, 7237-7259.	4.1	15
47	Differential physiological and biochemical responses of three Echinacea species to salinity stress. Scientia Horticulturae, 2012, 135, 23-31.	3.6	74
48	Effects of glucans and eicosapentaenoic acid on differential regulation of phenylpropanoid and mevalonic pathways during potato response to Phytophthora infestans. Plant Physiology and Biochemistry, 2012, 60, 119-128.	5.8	9
49	Reducing progoitrin and enriching glucoraphanin in Braasica napus seeds through silencing of the GSL-ALK gene family. Plant Molecular Biology, 2012, 79, 179-189.	3.9	67
50	Salinity-induced changes in caffeic acid derivatives, alkamides and ketones in three Echinacea species. Environmental and Experimental Botany, 2012, 77, 234-241.	4.2	22
51	Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings. Plant Physiology and Biochemistry, 2012, 55, 7-15.	5.8	37
52	Alteration of secondary metabolites' profiles in potato leaves in response to weakly and highly aggressive isolates of Phytophthora infestans. Plant Physiology and Biochemistry, 2012, 57, 8-14.	5.8	45
53	<i>Botrytis cinerea</i> Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato Â. Plant Cell, 2011, 23, 2405-2421.	6.6	343
54	Biocontrol Treatments Confer Protection Against <i>Verticillium dahliae</i> Infection of Potato by Inducing Antimicrobial Metabolites. Molecular Plant-Microbe Interactions, 2011, 24, 328-335.	2.6	65

#	Article	IF	CITATIONS
55	Induction of putative pathogenicity-related genes in Verticillium dahliae in response to elicitation with potato root extracts. Environmental and Experimental Botany, 2011, 72, 251-257.	4.2	20
56	MAM gene silencing leads to the induction of C3 and reduction of C4 and C5 side-chain aliphatic glucosinolates in Brassica napus. Molecular Breeding, 2011, 27, 467-478.	2.1	43
57	Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with <i>Fusarium oxysporum</i> f. sp. <i>albedinis</i> . Journal of Pathogens, 2011, 2011, 1-9.	1.4	13
58	The development of a model to predict the potential efficacy of <i>Trichoderma harzianum</i> isolates on perithecial production of <i>Gibberella zeae</i> based on secondary metabolite production. Canadian Journal of Plant Pathology, 2011, 33, 337-346.	1.4	8
59	Verticillium dahliae's VdNEP acts both as a plant defence elicitor and a pathogenicity factor in the interaction withHelianthus annuus. Canadian Journal of Plant Pathology, 2011, 33, 375-388.	1.4	12
60	Variations in relative humidity modulate Leptosphaeria spp. pathogenicity and interfere with canola mechanisms of defence. European Journal of Plant Pathology, 2010, 126, 187-202.	1.7	12
61	Induction of defense genes and secondary metabolites in saskatoons (Amelanchier alnifolia Nutt.) in response to Entomosporium mespili using jasmonic acid and Canada milkvetch extracts. Environmental and Experimental Botany, 2010, 68, 273-282.	4.2	5
62	Proteomic analysis of the phytopathogenic soilborne fungus <i>Verticillium dahliae</i> reveals differential protein expression in isolates that differ in aggressiveness. Proteomics, 2010, 10, 289-303.	2.2	69
63	Identification and Cloning of Differentially Expressed Genes Involved in the Interaction Between Potato and <i>Phytophthora infestans</i> using a Subtractive Hybridization and cDNAâ€AFLP Combinational Approach. Journal of Integrative Plant Biology, 2010, 52, 453-467.	8.5	15
64	In memoriam/En mémoir. Canadian Journal of Plant Pathology, 2010, 32, 283-286.	1.4	0
65	Chitosan in Plant Protection. Marine Drugs, 2010, 8, 968-987.	4.6	545
66	Prevalence and species identification of <i>Pratylenchus</i> spp. in Manitoba potato fields and host suitability of †Russet Burbank'. Canadian Journal of Plant Pathology, 2010, 32, 272-282.	1.4	11
67	Streptomyces scabiei and its toxin thaxtomin A induce scopoletin biosynthesis in tobacco and Arabidopsis thaliana. Plant Cell Reports, 2009, 28, 1895-1903.	5.6	32
68	Pathogenic variation ofVerticillium dahliaeafter serial passages through potato and sunflower. Canadian Journal of Plant Pathology, 2009, 31, 427-438.	1.4	12
69	Response of a soil nematode community to liquid hog manure and its acidification. Applied Soil Ecology, 2009, 43, 75-82.	4.3	14
70	Priming canola resistance to blackleg with weakly aggressive isolates leads to an activation of hydroxycinnamates. Canadian Journal of Plant Pathology, 2009, 31, 393-406.	1.4	9
71	Differential activation and suppression of potato defence responses by <i>Phytophthora infestans</i> isolates representing USâ€1 and USâ€8 genotypes. Plant Pathology, 2008, 57, 1026-1037.	2.4	55
72	DNA sequencing reveals false positives during the detection of aster yellows phytoplasmas in leafhoppers. Scientia Horticulturae, 2008, 116, 130-137.	3.6	7

#	Article	IF	CITATIONS
73	Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biological Control, 2008, 44, 90-100.	3.0	79
74	Pathogenic variability of <i>Verticillium dahliae</i> isolates from potato fields in Manitoba and screening of bacteria for their biocontrol. Canadian Journal of Plant Pathology, 2007, 29, 141-152.	1.4	30
75	Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiology and Biochemistry, 2007, 45, 470-479.	5.8	77
76	Biological control of bayoud disease in date palm: Selection of microorganisms inhibiting the causal agent and inducing defense reactions. Environmental and Experimental Botany, 2007, 59, 224-234.	4.2	53
77	Detection of antibiotic-related genes from bacterial biocontrol agents with polymerase chain reaction. Canadian Journal of Microbiology, 2006, 52, 476-481.	1.7	56
78	Local and distal gene expression of pr-1 and pr-5 in potato leaves inoculated with isolates from the old (US-1) and the new (US-8) genotypes of Phytophthora infestans (Mont.) de Bary. Environmental and Experimental Botany, 2006, 57, 70-79.	4.2	19
79	Toxin-based in-vitro selection and its potential application to date palm for resistance to the bayoud Fusarium wilt. Comptes Rendus - Biologies, 2005, 328, 732-744.	0.2	32
80	Genes encoding pathogenesis-related proteins PR-2, PR-3 and PR-9, are differentially regulated in potato leaves inoculated with isolates from US-1 and US-8 genotypes of Phytophthora infestans (Mont.) de Bary. Physiological and Molecular Plant Pathology, 2005, 67, 49-56.	2.5	16
81	Enhancement of Defence Responses against Bayoud Disease by Treatment of Date Palm Seedlings with an Hypoaggressive Fusarium oxysporum Isolate. Journal of Phytopathology, 2004, 152, 182-189.	1.0	46
82	US-1 and US-8 genotypes of Phytophthora infestans differentially affect local, proximal and distal gene expression of phenylalanine ammonia-lyase and 3-hydroxy, 3-methylglutaryl CoA reductase in potato leaves. Physiological and Molecular Plant Pathology, 2004, 65, 157-167.	2.5	26
83	Changes in race structure ofGpi100:111:122 andGpi100:100:111 populations ofPhytophthora infestansin Canada during 1997–1999. Canadian Journal of Plant Pathology, 2004, 26, 548-554.	1.4	1
84	Incidence and molecular detection of yellows-type disease in carrots, associated with leafhoppers in southern Manitoba, Canada. Canadian Journal of Plant Pathology, 2004, 26, 498-505.	1.4	10
85	US-8 and US-11 genotypes ofPhytophthora infestans from potato and tomato respond differently to commercial fungicides. American Journal of Potato Research, 2003, 80, 329-334.	0.9	1
86	Elicitation of soluble phenolics in date palm (Phoenix dactylifera) callus by Fusarium oxysporum f. sp. albedinis culture medium. Environmental and Experimental Botany, 2003, 49, 41-47.	4.2	56
87	Differential pathogenicity on potato and tomato of <i>Phytophthora infestans</i> US-8 and US-11 strains isolated from potato and tomato. Canadian Journal of Plant Pathology, 2003, 25, 150-154.	1.4	10
88	Comparative screening of bacteria for biological control of potato late blight (strain US-8), using invitro, detached-leaves, and whole-plant testing systems. Canadian Journal of Plant Pathology, 2003, 25, 276-284.	1.4	70
89	Variability in responses of US-8 and US-11 genotypes of potato and tomato isolates ofPhytophthora infestans to commercial fungicidesin vitro. American Journal of Potato Research, 2002, 79, 433-441.	0.9	11
90	Relationships between pathotypes and RAPDs, Gpi-allozyme patterns, mating types, and resistance to metalaxyl ofPhytophthora infestans in Canada in 1997. American Journal of Potato Research, 2001, 78, 129.	0.9	13

#	Article	IF	CITATIONS
91	Random amplified polymorphic DNA (RAPD) analysis of Phytophthora infestans isolates collected in Canada during 1994 to 1996. Plant Pathology, 2000, 49, 252-260.	2.4	24
92	Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathology, 2000, 49, 523-530.	2.4	93
93	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1579-1593.	1.8	99
94	Changes in metalaxyl resistance among glucose phosphate isomerase genotypes ofPhytophthora infestans in Canada during 1997 and 1998. American Journal of Potato Research, 2000, 77, 311-318.	0.9	23
95	Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathology, 1999, 48, 66-76.	2.4	112
96	Assessment of mating types and resistance to metalaxyl of Canadian populations ofPhytophthora infestans in 1997. American Journal of Potato Research, 1999, 76, 287-295.	0.9	19
97	Hyaline mutants from Verticillium dahliae , an example of selection and characterization of strains for host–parasite interaction studies. Plant Pathology, 1998, 47, 523-529.	2.4	10
98	Methyl Ester of p-Coumaric Acid: A Phytoalexin-Like Compound from Long English Cucumber Leaves. Journal of Chemical Ecology, 1997, 23, 1517-1526.	1.8	102
99	Differentiation ofVerticillium dahliae populations on the basis of vegetative compatibility and pathogenicity on cotton. European Journal of Plant Pathology, 1995, 101, 69-79.	1.7	119
100	The Effects of Plant Extracts of <i>Reynoutria sachalinensis</i> on Powdery Mildew Development and Leaf Physiology of Long English Cucumber. Plant Disease, 1995, 79, 577.	1.4	102
101	Gene Discovery and Metabolic Engineering in the Phenylpropanoid Pathway. , 0, , 113-138.		0
102	Phenols and the Onset and Expression of Plant Disease Resistance. , 0, , 211-227.		7
103	Bioavailability, Metabolism, and Bioactivity of Food Ellagic Acid and Related Polyphenols. , 0, , 263-277.		8
104	Polyphenols and Gene Expression. , 0, , 359-377.		2
105	Methods for Synthesizing the Cocoa-Derived Oligomeric Epi-Catechins– Observations on the Anticancer Activity of the Cocoa Polyphenols. , 0, , 88-112.		3
106	Recent Advances in the Molecular Biology and Metabolic Engineering of Flavonoid Biosynthesis in Ornamental Plants. , 0, , 139-166.		2
107	Salicylic Acid and Induced Plant Defenses. , 0, , 202-210.		4
108	Bioactivity, Absorption, and Metabolism of Anthocyanins. , 0, , 228-262.		18

108 Bioactivity, Absorption, and Metabolism of Anthocyanins. , 0, , 228-262.

#	Article	IF	CITATIONS
109	Phytoestrogens in Drug Discovery for Controlling Steroid Biosynthesis. , 0, , 293-316.		2
110	Recent Advances in the Field of Anthocyaninsâ \in " Main Focus on Structures. , 0, , 167-201.		16
111	Recent Advances in the Chemical Synthesis and Biological Activity of Phenolic Metabolites. , 0, , 317-358.		6