Michael G Ramsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1874408/publications.pdf Version: 2024-02-01

MICHAEL C. RAMSEY

#	Article	IF	CITATIONS
1	Analysis of ash emissions from the 2020 Nishinoshima eruption using ASTER thermal infrared orbital data. Journal of Volcanology and Geothermal Research, 2022, 421, 107424.	2.1	5
2	The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption. Remote Sensing, 2022, 14, 1641.	4.0	5
3	Volcanology 2030: will an orbital volcano observatory finally become a reality?. Bulletin of Volcanology, 2022, 84, 1.	3.0	9
4	Structured elicitation of expert judgement in real-time eruption scenarios: an exercise for Piton de la Fournaise volcano, La Réunion island. Volcanica, 2022, 5, 105-131.	1.8	2
5	Thermal and seismic precursors to the explosive eruption at La Soufrière Volcano, St. Vincent in April 2021. Earth and Planetary Science Letters, 2022, 592, 117621.	4.4	13
6	Implementation of the NHI (Normalized Hot Spot Indices) Algorithm on Infrared ASTER Data: Results and Future Perspectives. Sensors, 2021, 21, 1538.	3.8	10
7	The influence of variable emissivity on lava flow propagation modeling. Bulletin of Volcanology, 2021, 83, 1.	3.0	11
8	Quantitative Thermal Emission Spectroscopy at High Temperatures: A Laboratory Approach for Measurement and Calibration. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022157.	3.4	3
9	Volcano Crisis Management at Piton de la Fournaise (La Réunion) during the COVID-19 Lockdown. Seismological Research Letters, 2021, 92, 38-52.	1.9	12
10	Operationalizing Global Volcano Monitoring Using High Resolution Orbital Remote Sensing. , 2021, , .		0
11	Assessing Lava Flow Subpixel Surface Roughness and Particle Size Distribution for Improved Thermal Inertia Interpretations. Remote Sensing, 2020, 12, 2914.	4.0	1
12	Pyroclastic Density Current Hazard Assessment and Modeling Uncertainties for Fuego Volcano, Guatemala. Remote Sensing, 2020, 12, 2790.	4.0	6
13	Spatiotemporal variability of active lava surface radiative properties using ground-based multispectral thermal infrared data. Journal of Volcanology and Geothermal Research, 2020, 408, 107077.	2.1	9
14	The Spatial and Spectral Resolution of ASTER Infrared Image Data: A Paradigm Shift in Volcanological Remote Sensing. Remote Sensing, 2020, 12, 738.	4.0	23
15	Uncertainty Analysis of Remotely-Acquired Thermal Infrared Data to Extract the Thermal Properties of Active Lava Surfaces. Remote Sensing, 2020, 12, 193.	4.0	6
16	Identifying eruptive sources of drifting volcanic ash clouds using back-trajectory modeling of spaceborne thermal infrared data. Bulletin of Volcanology, 2019, 81, 1.	3.0	1
17	MMT-Cam: A New Miniature Multispectral Thermal Infrared Camera System for Capturing Dynamic Earth Processes. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7438-7446.	6.3	11
18	The Unusual Thermophysical and Surface Properties of the Daedalia Planum Lava Flows. Journal of Geophysical Research E: Planets, 2019, 124, 1945-1959.	3.6	5

MICHAEL G RAMSEY

#	Article	IF	CITATIONS
19	Combining Ground―and ASTERâ€Based Thermal Measurements to Constrain Fumarole Field Heat Budgets: The Case of Vulcano Fossa 2000–2019. Geophysical Research Letters, 2019, 46, 11868-11877.	4.0	19
20	On the Applicability of Laboratory Thermal Infrared Emissivity Spectra for Deconvolving Satellite Data of Opaque Volcanic Ash Plumes. Remote Sensing, 2019, 11, 2318.	4.0	5
21	Equilibrium crystallization modeling of Venusian lava flows incorporating data with large geochemical uncertainties. Earth and Planetary Science Letters, 2019, 516, 156-163.	4.4	3
22	Validation of an integrated satellite-data-driven response to an effusive crisis: the April–May 2018 eruption of Piton de la Fournaise. Annals of Geophysics, 2019, 61, .	1.0	26
23	The influence of emissivity on the thermo-rheological modeling of the channelized lava flows at Tolbachik volcano. Annals of Geophysics, 2019, 61, .	1.0	15
24	Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data. Journal of Volcanology and Geothermal Research, 2018, 354, 115-129.	2.1	9
25	Magmatically assisted off-rift extension—The case for broadly distributed strain accommodation. , 2018, 14, 1544-1563.		15
26	Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars. Journal of Volcanology and Geothermal Research, 2017, 342, 13-28.	2.1	28
27	Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars. Remote Sensing, 2016, 8, 152.	4.0	5
28	Synergistic use of satellite thermal detection and science: a decadal perspective using ASTER. Geological Society Special Publication, 2016, 426, 115-136.	1.3	30
29	What can thermal infrared remote sensing of terrestrial volcanoes tell us about processes past and present on Mars?. Journal of Volcanology and Geothermal Research, 2016, 311, 198-216.	2.1	10
30	Applications of high-resolution satellite remote sensing for northern Pacific volcanic arcs. , 2015, , 79-99.		1
31	MAGI: A New High-Performance Airborne Thermal-Infrared Imaging Spectrometer for Earth Science Applications. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5447-5457.	6.3	18
32	Thermal deconvolution: Accurate retrieval of multispectral infrared emissivity from thermally-mixed volcanic surfaces. Remote Sensing of Environment, 2014, 140, 690-703.	11.0	14
33	The protracted development of focused magmatic intrusion during continental rifting. Tectonics, 2014, 33, 875-897.	2.8	47
34	Exploration of geothermal systems using hyperspectral thermal infrared remote sensing. Journal of Volcanology and Geothermal Research, 2013, 265, 27-38.	2.1	25
35	A radiometrically-accurate super-resolution approach to thermal infrared image data. International Journal of Image and Data Fusion, 2013, 4, 52-74.	1.7	0
36	Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?. Journal of Volcanology and Geothermal Research, 2013, 249, 217-233.	2.1	92

MICHAEL G RAMSEY

#	Article	IF	CITATIONS
37	Development of a new laboratory technique for highâ€ŧemperature thermal emission spectroscopy of silicate melts. Journal of Geophysical Research: Solid Earth, 2013, 118, 1968-1983.	3.4	22
38	Remote sensing and geologic mapping of glaciovolcanic deposits in the region surrounding Askja (Dyngjufjöll) volcano, Iceland. International Journal of Remote Sensing, 2013, 34, 7178-7198.	2.9	14
39	Surface textures and dynamics of the 2005 lava dome at Shiveluch volcano, Kamchatka. Bulletin of the Geological Society of America, 2012, 124, 678-689.	3.3	20
40	Super-resolution of THEMIS thermal infrared data: Compositional relationships of surface units below the 100 meter scale on Mars. Icarus, 2010, 208, 704-720.	2.5	7
41	Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations. Remote Sensing, 2010, 2, 2571-2583.	4.0	22
42	Spectral analysis of synthetic quartzofeldspathic glasses using laboratory thermal infrared spectroscopy. Journal of Geophysical Research, 2010, 115, .	3.3	12
43	Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data. Journal of Geophysical Research, 2010, 115, .	3.3	62
44	The 2005 eruption of Kliuchevskoi volcano: Chronology and processes derived from ASTER spaceborne and field-based data. Journal of Volcanology and Geothermal Research, 2009, 184, 367-380.	2.1	22
45	ASTER- and field-based observations at Bezymianny Volcano: Focus on the 11 May 2007 pyroclastic flow deposit. Remote Sensing of Environment, 2009, 113, 2142-2151.	11.0	24
46	Micronâ€scale roughness of volcanic surfaces from thermal infrared spectroscopy and scanning electron microscopy. Journal of Geophysical Research, 2009, 114, .	3.3	20
47	ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia. Remote Sensing of Environment, 2008, 112, 2569-2577.	11.0	41
48	Radiometric normalization and image mosaic generation of ASTER thermal infrared data: An application to extensive sand sheets and dune fields. Remote Sensing of Environment, 2008, 112, 920-933.	11.0	43
49	Monitoring volcanic threats using ASTER satellite data. , 2007, , .		0
50	Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses. Geophysical Research Letters, 2007, 34, .	4.0	31
51	Detection of a new summit crater on Bezymianny Volcano lava dome: satellite and field-based thermal data. Bulletin of Volcanology, 2007, 69, 811-815.	3.0	34
52	Thermal infrared data analyses of Meteor Crater, Arizona: Implications for Mars spaceborne data from the Thermal Emission Imaging System. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	9
53	Monitoring eruptive activity at Mount St. Helens with TIR image data. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	35
54	Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing. Journal of Volcanology and Geothermal Research, 2004, 135, 195-219.	2.1	81

MICHAEL G RAMSEY

#	Article	IF	CITATIONS
55	Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR. Journal of Volcanology and Geothermal Research, 2004, 135, 127-146.	2.1	79
56	Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA's Earth Observing System. Journal of Volcanology and Geothermal Research, 2004, 135, 1-11.	2.1	35
57	Surface unit characterization of the Mauna Ulu flow field, Kilauea Volcano, Hawai′i, using integrated field and remote sensing analyses. Journal of Volcanology and Geothermal Research, 2004, 135, 169-193.	2.1	30
58	Ejecta distribution patterns at Meteor Crater, Arizona: On the applicability of lithologic end-member deconvolution for spaceborne thermal infrared data of Earth and Mars. Journal of Geophysical Research, 2002, 107, 3-1.	3.3	24
59	Monitoring urban land cover change. Remote Sensing of Environment, 2001, 77, 173-185.	11.0	410
60	Identification of sand sources and transport pathways at the Kelso Dunes, California, using thermal infrared remote sensing. Bulletin of the Geological Society of America, 1999, 111, 646-662.	3.3	87
61	Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring. Bulletin of Volcanology, 1999, 61, 32-39.	3.0	88
62	Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 1998, 103, 577-596.	3.3	361
63	Optical Satellite Volcano Monitoring: A Multi-Sensor Rapid Response System. , 0, , .		4
64	Mapping the City Landscape from Space: The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) Urban Environmental Monitoring Program. Special Publications, 0, , 337-361.	0.0	11