Lynn M Schriml

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1873956/publications.pdf

Version: 2024-02-01

74 papers

23,377 citations

94433 37 h-index 71
g-index

81 all docs

81 docs citations

81 times ranked 33531 citing authors

#	Article	IF	CITATIONS
1	Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486, 207-214.	27.8	9,614
2	A framework for human microbiome research. Nature, 2012, 486, 215-221.	27.8	2,249
3	Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420, 563-573.	27.8	1,548
4	Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 2017, 35, 725-731.	17.5	1,512
5	Database resources of the National Center for Biotechnology. Nucleic Acids Research, 2003, 31, 28-33.	14.5	879
6	Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Research, 2012, 40, D940-D946.	14.5	793
7	Functional annotation of a full-length mouse cDNA collection. Nature, 2001, 409, 685-690.	27.8	653
8	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 2011, 29, 415-420.	17.5	608
9	Dating the Origin of the CCR5-Δ32 AIDS-Resistance Allele by the Coalescence of Haplotypes. American Journal of Human Genetics, 1998, 62, 1507-1515.	6.2	507
10	Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Research, 2015, 43, D1071-D1078.	14.5	498
11	Mutational Spectra of PTEN/MMAC1 Gene: a Tumor Suppressor With Lipid Phosphatase Activity. Journal of the National Cancer Institute, 1999, 91, 1922-1932.	6. 3	473
12	Minimum Information about an Uncultivated Virus Genome (MIUViG). Nature Biotechnology, 2019, 37, 29-37.	17.5	414
13	Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic Acids Research, 2019, 47, D955-D962.	14.5	383
14	Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2004, 33, D39-D45.	14.5	369
15	The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease. American Journal of Human Genetics, 2015, 97, 111-124.	6.2	203
16	Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Research, 2002, 30, 13-16.	14.5	184
17	The Genomic Standards Consortium. PLoS Biology, 2011, 9, e1001088.	5.6	180
18	Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.	30.7	170

#	Article	IF	Citations
19	FoodOn: a harmonized food ontology to increase global food traceability, quality control and data integration. Npj Science of Food, 2018, 2, 23.	5.5	164
20	A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell, 2021, 184, 3376-3393.e17.	28.9	164
21	MIxS-BE: a MIxS extension defining a minimum information standard for sequence data from the built environment. ISME Journal, 2014, 8, 1-3.	9.8	127
22	A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. Nature Genetics, 2020, 52, 448-457.	21.4	104
23	Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium. Stem Cell Reports, 2016, 7, 110-125.	4.8	101
24	A radiation hybrid map of mouse genes. Nature Genetics, 2001, 29, 201-205.	21.4	93
25	The Human Disease Ontology 2022 update. Nucleic Acids Research, 2022, 50, D1255-D1261.	14.5	92
26	Augmenting the disease ontology improves and unifies disease annotations across species. DMM Disease Models and Mechanisms, $2018,11,1$	2.4	81
27	OBO Foundry in 2021: operationalizing open data principles to evaluate ontologies. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	77
28	Wikidata as a knowledge graph for the life sciences. ELife, 2020, 9, .	6.0	76
29	The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside. Journal of Biomedical Semantics, 2011, 2, S1.	1.6	68
30	ECO, the Evidence & Evidence & Discourse on Conclusion Ontology: community standard for evidence information. Nucleic Acids Research, 2019, 47, D1186-D1194.	14.5	67
31	The Disease Ontology: fostering interoperability between biological and clinical human disease-related data. Mammalian Genome, 2015, 26, 584-589.	2.2	60
32	COVID-19 pandemic reveals the peril of ignoring metadata standards. Scientific Data, 2020, 7, 188.	5.3	56
33	Genomic Methods and Microbiological Technologies for Profiling Novel and Extreme Environments for the Extreme Microbiome Project (XMP). Journal of Biomolecular Techniques, 2017, 28, 31-39.	1.5	53
34	Parasite microbiome project: Grand challenges. PLoS Pathogens, 2019, 15, e1008028.	4.7	50
35	Molecular, phenotypic, and sample-associated data to describe pluripotent stem cell lines and derivatives. Scientific Data, 2017, 4, 170030.	5.3	48
36	Wikidata as a semantic framework for the Gene Wiki initiative. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw015.	3.0	47

#	Article	IF	Citations
37	Toward unrestricted use of public genomic data. Science, 2019, 363, 350-352.	12.6	45
38	Generating a focused view of disease ontology cancer terms for pan-cancer data integration and analysis. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav032-bav032.	3.0	40
39	Habitat-Lite: A GSC Case Study Based on Free Text Terms for Environmental Metadata. OMICS A Journal of Integrative Biology, 2008, 12, 129-136.	2.0	39
40	Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System. Genome Research, 2003, 13 , $1542-1551$.	5. 5	34
41	Standardized Metadata for Human Pathogen/Vector Genomic Sequences. PLoS ONE, 2014, 9, e99979.	2.5	34
42	An ATP-binding cassette gene (ABCG3) closely related to the multidrug transporter ABCG2 (MXR/ABCP) has an unusual ATP-binding domain. Mammalian Genome, 2001, 12, 86-88.	2.2	32
43	Genomic Standards Consortium Projects. Standards in Genomic Sciences, 2014, 9, 599-601.	1.5	29
44	Identification of 18 Mouse ABC Genes and Characterization of the ABC Superfamily in Mus musculus. Genomics, 2000, 64, 24-31.	2.9	28
45	Metagenomes and metatranscriptomes from the L4 long-term coastal monitoring station in the Western English Channel. Standards in Genomic Sciences, 2010, 3, 183-193.	1.5	28
46	Microbiome Metadata Standards: Report of the National Microbiome Data Collaborative's Workshop and Follow-On Activities. MSystems, 2021, 6, .	3.8	28
47	Genomic Standards Consortium Projects. Standards in Genomic Sciences, 2014, 9, 599-601.	1.5	26
48	GeMInA, Genomic Metadata for Infectious Agents, a geospatial surveillance pathogen database. Nucleic Acids Research, 2010, 38, D754-D764.	14.5	25
49	Use of Denaturing HPLC to Map Human and Murine Genes and to Validate Single-Nucleotide Polymorphisms. BioTechniques, 2000, 28, 740-745.	1.8	21
50	Identifying and characterizing a five-gene cluster of ATP-binding cassette transporters mapping to human chromosome 17q24: a new subgroup within the ABCA subfamily. GeneScreen, 2001, 1, 157-164.	0.6	20
51	Darwinian genomics and diversity in the tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	19
52	Connecting Sequence and Biology in the Laboratory Mouse. Genome Research, 2003, 13, 1505-1519.	5 . 5	18
53	Annotating public fungal ITS sequences from the built environment according to the MixS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys, 0, 16, 1-15.	1.9	16
54	Laying the Foundation for a Genomic Rosetta Stone: Creating Information Hubs through the Use of Consensus Identifiers. OMICS A Journal of Integrative Biology, 2008, 12, 123-127.	2.0	12

#	Article	IF	Citations
55	COVID-19 biomarkers and their overlap with comorbidities in a disease biomarker data model. Briefings in Bioinformatics, 2021, 22, .	6.5	11
56	Meeting Report from the Genomic Standards Consortium (GSC) Workshop 10. Standards in Genomic Sciences, 2010, 3, 225-231.	1.5	8
57	The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness. Standards in Genomic Sciences, 2012, 6, 444-453.	1.5	8
58	Wikidata as a linked-data hub for Biodiversity dataÂ. Biodiversity Information Science and Standards, 0, 3, .	0.0	8
59	Human Disease Genes and Their Cloned Mouse Orthologs: Exploration of the FANTOM2 cDNA Sequence Data Set. Genome Research, 2003, 13, 1496-1500.	5 . 5	7
60	Annotating unknown species of urban microorganisms on a global scale unveils novel functional diversity and local environment association. Environmental Research, 2022, 207, 112183.	7.5	7
61	RCN4GSC Workshop Report: Managing Data at the Interface of Biodiversity and (Meta)Genomics, March 2011. Standards in Genomic Sciences, 2012, 7, 159-165.	1.5	5
62	Consent insufficient for data releaseâ€"Response. Science, 2019, 364, 446-446.	12.6	5
63	Meeting Report from the Genomic Standards Consortium (GSC) Workshop 9. Standards in Genomic Sciences, 2010, 3, 216-224.	1.5	3
64	Report of the 13th Genomic Standards Consortium Meeting, Shenzhen, China, March 4–7, 2012 Standards in Genomic Sciences, 2012, 6, 276-286.	1.5	3
65	Response to Biesecker etÂal American Journal of Human Genetics, 2021, 108, 1807-1808.	6.2	3
66	MIxS-SA: a MIxS extension defining the minimum information standard for sequence data from symbiont-associated micro-organisms. ISME Communications, 2022, 2, .	4.2	3
67	A decade of <i>GigaScience</i> : 10 years of the evolving genomic and biomedical standards landscape. GigaScience, 2022, 11, .	6.4	3
68	A community approach to the cancer-variant-interpretation bottleneck. Nature Cancer, 2022, 3, 522-525.	13.2	3
69	Meeting Report: "Metagenomics, Metadata and Meta-analysis―(M3) Workshop at the Pacific Symposium on Biocomputing 2010. Standards in Genomic Sciences, 2010, 2, 357-360.	1.5	2
70	Metagenomics: A foundling finds its feet Standards in Genomic Sciences, 2010, 3, 212-213.	1.5	1
71	Report of the 14th Genomic Standards Consortium Meeting, Oxford, UK, September 17-21, 2012 Standards in Genomic Sciences, 2014, 9, 1236-1250.	1.5	1
72	Abstract 210: Advancing knowledgebase representation of pediatric cancer variants through ClinGen/CIViC collaboration. , 2021, , .		0

#	Article	IF	CITATIONS
73	eP063: Genetic variants associated with childhood cancers: Curation initiatives of the ClinGen Somatic Cancer Pediatric Taskforce. Genetics in Medicine, 2022, 24, S41-S42.	2.4	O
74	Etiology context of rare diseases in the Human Disease Ontology. , 2021, , .		0