Antonio M Persico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1873693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell, 2020, 180, 568-584.e23.	28.9	1,422
2	Consensus Paper: Pathological Role of the Cerebellum in Autism. Cerebellum, 2012, 11, 777-807.	2.5	577
3	Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends in Neurosciences, 2006, 29, 349-358.	8.6	498
4	A genetic variant that disrupts <i>MET</i> transcription is associated with autism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16834-16839.	7.1	389
5	Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiology of Disease, 2008, 30, 303-311.	4.4	344
6	Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. European Neuropsychopharmacology, 2014, 24, 919-929.	0.7	251
7	Autism genetics. Behavioural Brain Research, 2013, 251, 95-112.	2.2	218
8	Barrel Pattern Formation Requires Serotonin Uptake by Thalamocortical Afferents, and Not Vesicular Monoamine Release. Journal of Neuroscience, 2001, 21, 6862-6873.	3.6	210
9	The EU-AIMS Longitudinal European Autism Project (LEAP): design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders. Molecular Autism, 2017, 8, 24.	4.9	183
10	Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Molecular Autism, 2016, 7, 47.	4.9	179
11	Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis. Psychiatry Research - Neuroimaging, 2015, 234, 239-251.	1.8	178
12	Disruption of cerebral cortex MET signaling in autism spectrum disorder. Annals of Neurology, 2007, 62, 243-250.	5.3	176
13	Association of a Functional Deficit of the BK _{Ca} Channel, a Synaptic Regulator of Neuronal Excitability, With Autism and Mental Retardation. American Journal of Psychiatry, 2006, 163, 1622-1629.	7.2	158
14	Mitochondrial dysfunction in autism spectrum disorders: Cause or effect?. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1130-1137.	1.0	152
15	Stratified medicine for mental disorders. European Neuropsychopharmacology, 2014, 24, 5-50.	0.7	152
16	Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology, 2014, 231, 1201-1216.	3.1	144
17	Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Research, 2008, 1, 159-168.	3.8	143
18	Reelin Is a Serine Protease of the Extracellular Matrix. Journal of Biological Chemistry, 2002, 277, 303-309.	3.4	137

ANTONIO M PERSICO

#	Article	IF	CITATIONS
19	Urinary p-cresol in autism spectrum disorder. Neurotoxicology and Teratology, 2013, 36, 82-90.	2.4	133
20	Clinical, Morphological, and Biochemical Correlates of Head Circumference in Autism. Biological Psychiatry, 2007, 62, 1038-1047.	1.3	131
21	The EU-AIMS Longitudinal European Autism Project (LEAP): clinical characterisation. Molecular Autism, 2017, 8, 27.	4.9	126
22	Identification and validation of biomarkers for autism spectrum disorders. Nature Reviews Drug Discovery, 2016, 15, 70-70.	46.4	117
23	Urinary <i>p</i> -cresol is elevated in small children with severe autism spectrum disorder. Biomarkers, 2011, 16, 252-260.	1.9	115
24	Advancing the science of developmental neurotoxicity (DNT): testing for better safety evaluation. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 202-215.	1.5	101
25	Lack of association between serotonin transporter gene promoter variants and autistic disorder in two ethnically distinct samples. American Journal of Medical Genetics Part A, 2000, 96, 123-127.	2.4	100
26	Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biological Psychiatry, 2004, 55, 413-419.	1.3	94
27	Urinary <i>p</i> -cresol is elevated in young French children with autism spectrum disorder: a replication study. Biomarkers, 2014, 19, 463-470.	1.9	88
28	Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Research, 2010, 3, 237-252.	3.8	85
29	Altered Connectivity Between Cerebellum, Visual, and Sensory-Motor Networks in Autism Spectrum Disorder: Results from the EU-AIMS Longitudinal European Autism Project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 260-270.	1.5	82
30	Genome-wide expression studies in Autism spectrum disorder, Rett syndrome, and Down syndrome. Neurobiology of Disease, 2012, 45, 57-68.	4.4	81
31	Altered Neocortical Cell Density and Layer Thickness in Serotonin Transporter Knockout Mice: A Quantitation Study. Cerebral Cortex, 2007, 17, 1394-1401.	2.9	68
32	Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. Journal of Neuroinflammation, 2013, 10, 38.	7.2	61
33	Reduced programmed cell death in brains of serotonin transporter knockout mice. NeuroReport, 2003, 14, 341-344.	1.2	57
34	Unmet needs in paediatric psychopharmacology: Present scenario and future perspectives. European Neuropsychopharmacology, 2015, 25, 1513-1531.	0.7	56
35	Serotonergic Regulation of Somatosensory Cortical Development: Lessons from Genetic Mouse Models. Developmental Neuroscience, 2003, 25, 173-183.	2.0	55
36	P-cresol Alters Brain Dopamine Metabolism and Exacerbates Autism-Like Behaviors in the BTBR Mouse. Brain Sciences, 2020, 10, 233.	2.3	55

ANTONIO M PERSICO

#	Article	IF	CITATIONS
37	Adenosine deaminase alleles and autistic disorder: Case-control and family-based association studies. American Journal of Medical Genetics Part A, 2000, 96, 784-790.	2.4	54
38	Cluster Analysis of Autistic Patients Based on Principal Pathogenetic Components. Autism Research, 2012, 5, 137-147.	3.8	54
39	Age-Dependent Decrease and Alternative Splicing of Methionine Synthase mRNA in Human Cerebral Cortex and an Accelerated Decrease in Autism. PLoS ONE, 2013, 8, e56927.	2.5	54
40	The Mitochondrial Aspartate/Glutamate Carrier AGC1 and Calcium Homeostasis: Physiological Links and Abnormalities in Autism. Molecular Neurobiology, 2011, 44, 83-92.	4.0	52
41	Case-control and family-based association studies of candidate genes in autistic disorder and its endophenotypes: TPH2 and GLO1. BMC Medical Genetics, 2007, 8, 11.	2.1	51
42	Slow intestinal transit contributes to elevate urinary <i>p</i> resol level in <scp>I</scp> talian autistic children. Autism Research, 2016, 9, 752-759.	3.8	51
43	Transcriptome Changes in the Alzheimer's Disease Middle Temporal Gyrus: Importance of RNA Metabolism and Mitochondria-Associated Membrane Genes. Journal of Alzheimer's Disease, 2019, 70, 691-713.	2.6	51
44	Converging Evidence for an Association of ATP2B2 Allelic Variants with Autism in Male Subjects. Biological Psychiatry, 2011, 70, 880-887.	1.3	49
45	Endocannabinoid Signaling in Autism. Neurotherapeutics, 2015, 12, 837-847.	4.4	49
46	The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part I: The past and the present. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 110, 110326.	4.8	47
47	Family-based association study of ITGB3 in autism spectrum disorder and its endophenotypes. European Journal of Human Genetics, 2011, 19, 353-359.	2.8	45
48	Association of autism with polyomavirus infection in postmortem brains. Journal of NeuroVirology, 2010, 16, 141-149.	2.1	42
49	Recurrent 15q11.2 BP1â€BP2 microdeletions and microduplications in the etiology of neurodevelopmental disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1088-1098.	1.7	41
50	Neocortical RELN promoter methylation increases significantly after puberty. NeuroReport, 2010, 21, 114-118.	1.2	40
51	Social brain activation during mentalizing in a large autism cohort: the Longitudinal European Autism Project. Molecular Autism, 2020, 11, 17.	4.9	40
52	Preliminary Transcriptome Analysis in Lymphoblasts from Cluster Headache and Bipolar Disorder Patients Implicates Dysregulation of Circadian and Serotonergic Genes. Journal of Molecular Neuroscience, 2015, 56, 688-695.	2.3	38
53	Phenotypic spectrum of <i>NRXN1</i> mono―and biâ€allelic deficiency: A systematic review. Clinical Genetics, 2020, 97, 125-137	2.0	38
54	Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. Journal of Neurodevelopmental Disorders, 2016, 8, 18.	3.1	35

#	Article	IF	CITATIONS
55	Genotype–phenotype correlation in <scp>Phelanâ€McDermid</scp> syndrome: A comprehensive review of chromosome 22q13 deleted genes. American Journal of Medical Genetics, Part A, 2021, 185, 2211-2233.	1.2	34
56	Deafferentationâ€induced apoptosis of neurons in thalamic somatosensory nuclei of the newborn rat: critical period and rescue from cell death by peripherally applied neurotrophins. European Journal of Neuroscience, 2000, 12, 2281-2290.	2.6	33
57	Decreased serum arylesterase activity in autism spectrum disorders. Psychiatry Research, 2010, 180, 105-113.	3.3	33
58	Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Research, 2006, 1095, 17-25.	2.2	32
59	2p15–p16.1 microdeletion syndrome: molecular characterization and association of the OTX1 and XPO1 genes with autism spectrum disorders. European Journal of Human Genetics, 2011, 19, 1264-1270.	2.8	30
60	Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology, 2014, 231, 1063-1078.	3.1	27
61	HOXA1gene variants influence head growth rates in humans. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 388-390.	1.7	26
62	Parkinsonian patients report blunted subjective effects of methylphenidate Experimental and Clinical Psychopharmacology, 1998, 6, 54-63.	1.8	24
63	Temporal Profiles of Social Attention Are Different Across Development in Autistic and Neurotypical People. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 813-824.	1.5	21
64	Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis. Molecular Autism, 2022, 13, 22.	4.9	20
65	The GLO1 C332 (Ala111) allele confers autism vulnerability: Family-based genetic association and functional correlates. Journal of Psychiatric Research, 2014, 59, 108-116.	3.1	19
66	Age- and gender-specific epistasis between ADA and TNF-α influences human life-expectancy. Cytokine, 2011, 56, 481-488.	3.2	17
67	Environmental Factors in the Onset of Autism Spectrum Disorder. Current Developmental Disorders Reports, 2014, 1, 8-19.	2.1	17
68	The psychopharmacology of autism spectrum disorder and Rett syndrome. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 165, 391-414.	1.8	17
69	Imbalanced social-communicative and restricted repetitive behavior subtypes of autism spectrum disorder exhibit different neural circuitry. Communications Biology, 2021, 4, 574.	4.4	17
70	Lack of Infection with XMRV or Other MLV-Related Viruses in Blood, Post-Mortem Brains and Paternal Gametes of Autistic Individuals. PLoS ONE, 2011, 6, e16609.	2.5	16
71	BDNF and NT-3 applied in the whisker pad reverse cortical changes after peripheral deafferentation in neonatal rats. European Journal of Neuroscience, 1998, 10, 3194-3200.	2.6	14
72	Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. SSRN Electronic Journal, 0, , .	0.4	12

#	Article	IF	CITATIONS
73	A Mutation in the Mitochondrial Aspartate/Glutamate Carrier Leads to a More Oxidizing Intramitochondrial Environment and an Inflammatory Myopathy in Dutch Shepherd Dogs. Journal of Neuromuscular Diseases, 2019, 6, 485-501.	2.6	11
74	Exclusion of close linkage between the synaptic vesicular monoamine transporter locus and schizophrenia spectrum disorders. American Journal of Medical Genetics Part A, 1995, 60, 563-565.	2.4	10
75	Xp22.33p22.12 Duplication in a Patient with Intellectual Disability and Dysmorphic Facial Features. Molecular Syndromology, 2015, 6, 236-241.	0.8	10
76	Evidence that ITGB3 promoter variants increase serotonin blood levels by regulating platelet serotonin transporter trafficking. Human Molecular Genetics, 2019, 28, 1153-1161.	2.9	10
77	FARPâ€∎ deletion is associated with lack of response to autism treatment by early start denver model in a multiplex family. Molecular Genetics & Genomic Medicine, 2020, 8, e1373.	1.2	10
78	Autisms. , 2020, , 35-77.		10
79	Actionable Genomics in Clinical Practice: Paradigmatic Case Reports of Clinical and Therapeutic Strategies Based upon Genetic Testing. Genes, 2022, 13, 323.	2.4	9
80	Transmission disequilibrium study of an oligodendrocyte and myelin glycoprotein gene allele in 431 families with an autistic proband. Neuroscience Research, 2007, 59, 426-430.	1.9	8
81	Candidate gene study of HOXB1 in autism spectrum disorder. Molecular Autism, 2010, 1, 9.	4.9	8
82	Yield of arrayâ€ <scp>CGH</scp> analysis in Tunisian children with autism spectrum disorder. Molecular Genetics & Genomic Medicine, 2022, 10, .	1.2	8
83	Copy number variation in 19 Italian multiplex families with autism spectrum disorder: Importance of synaptic and neurite elongation genes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 547-556.	1.7	7
84	Deficient Emotional Self-Regulation in Preschoolers With ADHD: Identification, Comorbidity, and Interpersonal Functioning. Journal of Attention Disorders, 2019, 23, 887-899.	2.6	7
85	Autism: Where Genetics Meets the Immune System. Autism Research & Treatment, 2012, 2012, 1-2.	0.5	6
86	Gut mobilization improves behavioral symptoms and modulates urinary pâ€cresol in chronically constipated autistic children: A prospective study. Autism Research, 2021, , .	3.8	6
87	Huntingtin gene CAG repeat size affects autism risk: Familyâ€based and case–control association study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 341-351.	1.7	5
88	Reevaluation of Serum Arylesterase Activity in Neurodevelopmental Disorders. Antioxidants, 2021, 10, 164.	5.1	5
89	Efficacy and Safety of Q10 Ubiquinol With Vitamins B and E in Neurodevelopmental Disorders: A Retrospective Chart Review. Frontiers in Psychiatry, 2022, 13, 829516.	2.6	5
90	Environmental Factors and Autism Spectrum Disorder. Key Issues in Mental Health, 2015, , 113-134.	0.6	4

ANTONIO M PERSICO

#	Article	IF	CITATIONS
91	Appropriateness of array CGH in the ADHD clinics: A comparative study. Genes, Brain and Behavior, 2020, 19, e12651.	2.2	4
92	Adenosine deaminase alleles and autistic disorder: Caseâ€control and familyâ€based association studies. American Journal of Medical Genetics Part A, 2000, 96, 784-790.	2.4	4
93	Polyomaviruses and autism: more than simple association?. Journal of NeuroVirology, 2010, 16, 332-333.	2.1	3
94	An Interstitial 17q11.2 de novo Deletion Involving the CDK5R1 Gene in a High-Functioning Autistic Patient. Molecular Syndromology, 2018, 9, 247-252.	0.8	2
95	Molecular biomarkers to track clinical improvement following an integrative treatment model in autistic toddlers. Acta Neuropsychiatrica, 2021, 33, 267-272.	2.1	2
96	Genome-Wide Expression Studies in Autism-Spectrum Disorders: Moving from Neurodevelopment to Neuroimmunology. Advances in Neurobiology, 2011, , 469-487.	1.8	2
97	Autism genetics: Methodological issues and experimental design. Science China Life Sciences, 2015, 58, 946-957.	4.9	1
98	Urinary polyomavirus infections in neurodevelopmental disorders. Open Journal of Psychiatry, 2013, 03, 18-25.	0.6	1
99	Depression and Catatonia Associated With Lansoprazole in an Adolescent With Phelan-McDermid Syndrome. Journal of Clinical Psychopharmacology, 2022, Publish Ahead of Print, .	1.4	1
100	Developing Gene-Based Personalised Interventions in Autism Spectrum Disorders. Genes, 2022, 13, 1004.	2.4	1
101	Developmental roles for the serotonin transporter. , 2010, , 78-104.		0
102	Migraine Genetics. Headache, 2017, , 19-30.	0.4	0