Rolf Teschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1873544/publications.pdf

Version: 2024-02-01

		47006	8	32547
176	6,980	47		72
papers	citations	h-index		g-index
179	179	179		3845
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	DILI Cases in Registries and Databases: An Analysis of Quality. The International Journal of Gastroenterology and Hepatology Diseases, 2022, 1, .	0.2	7
2	Anti-Diabetes, Anti-Gout, and Anti-Leukemia Properties of Essential Oils from Natural Spices Clausena indica, Zanthoxylum rhetsa, and Michelia tonkinensis. Molecules, 2022, 27, 774.	3.8	12
3	Alcohol basic and translational research 15th Charles Lieber - 1st Samuel French satellite symposium. Experimental and Molecular Pathology, 2022, , 104750.	2.1	4
4	Molecular, Viral and Clinical Features of Alcohol- and Non-Alcohol-Induced Liver Injury. Current Issues in Molecular Biology, 2022, 44, 1294-1315.	2.4	4
5	Letter to the editor: Electronic RUCAM: Major pitfalls call for caution and proper validation. Hepatology, 2022, 76, E27-E27.	7.3	8
6	Severe DILI in a Patient under Polypharmacy Including Rosuvastatin: Diagnostic Challenges and Lessons from a Case Report Assessed Using the Updated RUCAM Algorithm. The International Journal of Gastroenterology and Hepatology Diseases, 2022, 1, .	0.2	1
7	Liver Injury in COVID-19 Patients with Drugs as Causatives: A Systematic Review of 996 DILI Cases Published 2020/2021 Based on RUCAM as Causality Assessment Method. International Journal of Molecular Sciences, 2022, 23, 4828.	4.1	28
8	Editorial: chronic <scp>DILI</scp> and <scp>HILI</scp> â€" corticosteroid plus glycyrrhizin as standard therapy?. Alimentary Pharmacology and Therapeutics, 2022, 56, 166-167.	3.7	3
9	Idiosyncratic Drug-Induced Liver Injury (DILI) and Herb-Induced Liver Injury (HILI): Diagnostic Algorithm Based on the Quantitative Roussel Uclaf Causality Assessment Method (RUCAM). Diagnostics, 2021, 11, 458.	2.6	29
10	Idiosyncratic Drug Induced Liver Injury, Cytochrome P450, Metabolic Risk Factors and Lipophilicity: Highlights and Controversies. International Journal of Molecular Sciences, 2021, 22, 3441.	4.1	19
11	Efficacy of Xuebijing Injection for Acute Pancreatitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-14.	1.2	2
12	Mechanism of idiosyncratic drug induced liver injury (DILI): unresolved basic issues. Annals of Translational Medicine, 2021, 9, 730-730.	1.7	27
13	Herb-induced liver injury (HILI) with 12,068 worldwide cases published with causality assessments by Roussel Uclaf Causality Assessment Method (RUCAM): an overview. Translational Gastroenterology and Hepatology, 2021, 6, 51-51.	3.0	21
14	The LiverTox Paradox-Gaps between Promised Data and Reality Check. Diagnostics, 2021, 11, 1754.	2.6	16
15	Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. International Journal of Molecular Sciences, 2021, 22, 10419.	4.1	24
16	Antioxidant, Anti-tyrosinase, Anti-α-amylase, and Cytotoxic Potentials of the Invasive Weed Andropogon virginicus. Plants, 2021, 10, 69.	3.5	15
17	Diagnostic Biomarkers in Liver Injury by Drugs, Herbs, and Alcohol: Tricky Dilemma after EMA Correctly and Officially Retracted Letter of Support. International Journal of Molecular Sciences, 2020, 21, 212.	4.1	30
18	Worldwide Use of RUCAM for Causality Assessment in 81,856 Idiosyncratic DILI and 14,029 HILI Cases Published 1993–Mid 2020: A Comprehensive Analysis. Medicines (Basel, Switzerland), 2020, 7, 62.	1.4	57

#	Article	IF	Citations
19	Potential Hepatotoxins Found in Herbal Medicinal Products: A Systematic Review. International Journal of Molecular Sciences, 2020, 21, 5011.	4.1	34
20	Incidence, risk factors, and prognosis of abnormal liver biochemical tests in COVID-19 patients: a systematic review and meta-analysis. Hepatology International, 2020, 14, 621-637.	4.2	93
21	Herbs including shell ginger, antioxidant profiles, aging, and longevity in Okinawa, Japan: A critical analysis of current concepts., 2020,, 209-222.		1
22	Liver Injury by Drugs Metabolized via Cytochrome P450. Journal of Modern Medicinal Chemistry, 2020, 8, 93-98.	0.8	6
23	Herb-induced Liver Injury in Asia and Current Role of RUCAM for Causality Assessment in 11,160 Published Cases. Journal of Clinical and Translational Hepatology, 2020, 8, 200-214.	1.4	31
24	What Has the COVID-19 Pandemic Taught Us so Far? Addressing the Problem from a Hepatologist's Perspective. Journal of Clinical and Translational Hepatology, 2020, 8, 109-112.	1.4	33
25	Active Nature Based Ingredients for Drug Discovery with Pivotal Role of Clinical Efficacy: Review and Prospective. Journal of Modern Medicinal Chemistry, 2020, 8, 4-18.	0.8	8
26	Drug Induced Liver Injury: Mechanisms, Diagnosis, and Clinical Management. , 2020, , 95-105.		2
27	Acetaminophen syn. Paracetamol: Acute Liver Injury and Acute on Chronic Liver Failure with Case Analysis and Causality Assessment Using RUCAM., 2020,, 233-258.		2
28	Idiosyncratic DILI: Analysis of 46,266 Cases Assessed for Causality by RUCAM and Published From 2014 to Early 2019. Frontiers in Pharmacology, 2019, 10, 730.	3.5	58
29	Cordycepin Isolated from Cordyceps militaris: Its Newly Discovered Herbicidal Property and Potential Plant-Based Novel Alternative to Glyphosate. Molecules, 2019, 24, 2901.	3.8	26
30	Roussel Uclaf Causality Assessment Method for Drug-Induced Liver Injury: Present and Future. Frontiers in Pharmacology, 2019, 10, 853.	3.5	77
31	Alcoholic Liver Disease: Current Mechanistic Aspects with Focus on Their Clinical Relevance. Biomedicines, 2019, 7, 68.	3.2	42
32	Microsomal Ethanolâ€Oxidizing System: Success Over 50 Years and an Encouraging Future. Alcoholism: Clinical and Experimental Research, 2019, 43, 386-400.	2.4	32
33	Hepatotoxicity: Molecular Mechanisms and Pathophysiology. International Journal of Molecular Sciences, 2019, 20, 211.	4.1	6
34	Momilactones A and B Are α-Amylase and α-Glucosidase Inhibitors. Molecules, 2019, 24, 482.	3.8	49
35	How can green tea polyphenols affect drug metabolism and should we be concerned?. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 989-991.	3.3	7
36	Heavy Metal Accumulation in Water, Soil, and Plants of Municipal Solid Waste Landfill in Vientiane, Laos. International Journal of Environmental Research and Public Health, 2019, 16, 22.	2.6	142

#	Article	IF	CITATIONS
37	Biochemical Aspects of the Hepatic Microsomal Ethanol-oxidizing System (MEOS): Resolved Initial Controversies and Updated Molecular Views. , 2019, 08, .		4
38	Liver Injury from Herbs and "Dietary Supplements― Highlights of a Literature Review from 2015 to 2017. Current Pharmacology Reports, 2018, 4, 120-131.	3.0	13
39	Drug-Induced Liver Injury: Why is the Roussel Uclaf Causality Assessment Method (RUCAM) Still Used 25ÂYears After Its Launch?. Drug Safety, 2018, 41, 735-743.	3.2	69
40	Drug induced liver injury with analysis of alternative causes as confounding variables. British Journal of Clinical Pharmacology, 2018, 84, 1467-1477.	2.4	45
41	Clinical characteristics and outcomes of traditional Chinese medicine-induced liver injury: a systematic review. Expert Review of Gastroenterology and Hepatology, 2018, 12, 425-434.	3.0	43
42	Alcoholic steatohepatitis (ASH) and alcoholic hepatitis (AH): cascade of events, clinical aspects, and pharmacotherapy options. Expert Opinion on Pharmacotherapy, 2018, 19, 779-793.	1.8	33
43	Causality Assessment Methods in Drug-Induced Liver Injury. Methods in Pharmacology and Toxicology, 2018, , 555-594.	0.2	16
44	Hormesis and dose-responses in herbal traditional Chinese medicine (TCM) alone are insufficient solving real clinical TCM challenges and associated herbal quality issues. Longhua Chinese Medicine, 2018, 1, 3-3.	0.5	3
45	Alcoholic Liver Disease: Alcohol Metabolism, Cascade of Molecular Mechanisms, Cellular Targets, and Clinical Aspects. Biomedicines, 2018, 6, 106.	3.2	132
46	Is obesity rather than the dietary supplement used for weight reduction the cause of liver injury?. JGH Open, 2018, 2, 152-157.	1.6	9
47	Momilactones A and B: Optimization of Yields from Isolation and Purification. Separations, 2018, 5, 28.	2.4	12
48	Top-ranking drugs out of 3312 drug-induced liver injury cases evaluated by the Roussel Uclaf Causality Assessment Method. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 1-19.	3.3	37
49	Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury. Journal of Clinical and Translational Hepatology, 2018, 6, 1-12.	1.4	65
50	Xuebijing Injection Combined with Antibiotics for the Treatment of Spontaneous Bacterial Peritonitis in Liver Cirrhosis: A Meta-Analysis. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-10.	1.2	5
51	Molecular Research on Drug Induced Liver Injury. International Journal of Molecular Sciences, 2018, 19, 216.	4.1	4
52	Viewpoint: A Contributory Role of Shell Ginger (Alpinia zerumbet) for Human Longevity in Okinawa, Japan?. Nutrients, 2018, 10, 166.	4.1	42
53	Efficacy from Different Extractions for Chemical Profile and Biological Activities of Rice Husk. Sustainability, 2018, 10, 1356.	3.2	14
54	Liver Injury by Carbon Tetrachloride Intoxication in 16 Patients Treated with Forced Ventilation to Accelerate Toxin Removal via the Lungs: A Clinical Report. Toxics, 2018, 6, 25.	3.7	36

#	Article	IF	Citations
55	Aliphatic Halogenated Hydrocarbons: Report and Analysis of Liver Injury in 60 Patients. Journal of Clinical and Translational Hepatology, 2018, 6, 350-361.	1.4	8
56	Suspected Liver Injury and the Dilemma of Causality. Digestive Diseases and Sciences, 2017, 62, 1095-1098.	2.3	11
57	Drug-induced liver injury: Is chronic liver disease a risk factor and a clinical issue?. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 425-438.	3.3	41
58	Prospective Indian Study of DILI with Confirmed Causality Using the Roussel Uclaf Causality Assessment Method (RUCAM): A Report of Excellence. Annals of Hepatology, 2017, 16, 324-325.	1.5	15
59	Drug Induced Liver Injury: Can Biomarkers Assist RUCAM in Causality Assessment?. International Journal of Molecular Sciences, 2017, 18, 803.	4.1	53
60	Green Tea and Its Extracts in Cancer Prevention and Treatment. Beverages, 2017, 3, 17.	2.8	11
61	Herbal Traditional Chinese Medicine and suspected liver injury: A prospective study. World Journal of Hepatology, 2017, 9, 1141-1157.	2.0	52
62	Green tea and the question of reduced liver cancer risk: the dawn of potential clinical relevance?. Hepatobiliary Surgery and Nutrition, 2017, 6, 122-126.	1.5	4
63	The Honolulu Liver Disease Cluster at the Medical Center: Its Mysteries and Challenges. International Journal of Molecular Sciences, 2016, 17, 476.	4.1	30
64	Herbal Hepatotoxicity: Clinical Characteristics and Listing Compilation. International Journal of Molecular Sciences, 2016, 17, 588.	4.1	98
65	Drug, Herb, and Dietary Supplement Hepatotoxicity. International Journal of Molecular Sciences, 2016, 17, 1488.	4.1	24
66	Traditional Chinese Medicine (TCM) and Herbal Hepatotoxicity: RUCAM and the Role of Novel Diagnostic Biomarkers Such as MicroRNAs. Medicines (Basel, Switzerland), 2016, 3, 18.	1.4	76
67	RUCAM in Drug and Herb Induced Liver Injury: The Update. International Journal of Molecular Sciences, 2016, 17, 14.	4.1	502
68	The mystery of the Hawaii liver disease cluster in summer 2013: A pragmatic and clinical approach to solve the problem. Annals of Hepatology, 2016, 15, 91-109.	1.5	31
69	Diagnosis and Management of Drug-Induced Liver Injury (DILI) in Patients with Pre-Existing Liver Disease. Drug Safety, 2016, 39, 729-744.	3.2	47
70	Kava for the treatment of generalised anxiety disorder (K-GAD): study protocol for a randomised controlled trial. Trials, 2015, 16, 493.	1.6	29
71	Dihydro-5,6-dehydrokavain (DDK) from Alpinia zerumbet: Its Isolation, Synthesis, and Characterization. Molecules, 2015, 20, 16306-16319.	3.8	26
72	Traditional Chinese Medicine and herbal hepatotoxicity: a tabular compilation of reported cases. Annals of Hepatology, 2015, 14, 7-19.	1.5	69

#	Article	IF	CITATIONS
73	Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new encouraging steps. Frontiers in Pharmacology, 2015, 6, 72.	3.5	122
74	Drug-Induced Liver Injury: Expanding Our Knowledge by Enlarging Population Analysis With Prospective and Scoring Causality Assessment. Gastroenterology, 2015, 148, 1271-1273.	1.3	33
75	Herbal traditional Chinese medicine and its evidence base in gastrointestinal disorders. World Journal of Gastroenterology, 2015, 21, 4466-4490.	3.3	99
76	Chinese herbs and their molecules: Clinical and pathophysiological implications for the liver. Journal of Molecular Pathophysiology, 2015, 4, 85.	0.3	6
77	Traditional Chinese Medicine and herbal hepatotoxicity: a tabular compilation of reported cases. Annals of Hepatology, 2015, 14, 7-19.	1.5	37
78	Traditional Chinese Medicine Induced Liver Injury. Journal of Clinical and Translational Hepatology, 2014, 2, 80-94.	1.4	48
79	Drug and herb induced liver injury: Council for International Organizations of Medical Sciences scale for causality assessment. World Journal of Hepatology, 2014, 6, 17.	2.0	76
80	Drug induced liver injury: do we still need a routine liver biopsy for diagnosis today?. Annals of Hepatology, 2014, 13, 121-126.	1.5	26
81	Drug induced liver injury: accuracy of diagnosis in published reports. Annals of Hepatology, 2014, 13, 248-255.	1.5	57
82	Herbal hepatotoxicity: Analysis of cases with initially reported positive re-exposure tests. Digestive and Liver Disease, 2014, 46, 264-269.	0.9	34
83	Green tea extract and the risk of drug-induced liver injury. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 1663-1676.	3.3	39
84	Drug induced liver injury: accuracy of diagnosis in published reports. Annals of Hepatology, 2014, 13, 248-55.	1.5	34
85	Contaminant Hepatotoxins as Culprits for Kava Hepatotoxicity – Fact or Fiction?. Phytotherapy Research, 2013, 27, 472-474.	5.8	27
86	Clinical and causality assessment in herbal hepatotoxicity. Expert Opinion on Drug Safety, 2013, 12, 339-366.	2.4	57
87	Kava in the Treatment of Generalized Anxiety Disorder. Journal of Clinical Psychopharmacology, 2013, 33, 643-648.	1.4	99
88	Herbal hepatotoxicity. European Journal of Gastroenterology and Hepatology, 2013, 25, 1093-1098.	1.6	67
89	Herbal hepatotoxicity: a critical review. British Journal of Clinical Pharmacology, 2013, 75, 630-636.	2.4	66
90	Herbal hepatotoxicity: Challenges and pitfalls of causality assessment methods. World Journal of Gastroenterology, 2013, 19, 2864-2882.	3.3	55

#	Article	lF	CITATIONS
91	Herbalife hepatotoxicity: Evaluation of cases with positive reexposure tests. World Journal of Hepatology, 2013, 5, 353.	2.0	35
92	Herbal hepatotoxicity and WHO global introspection method. Annals of Hepatology, 2013, 12, 11-21.	1.5	23
93	Drug- and Herb-Induced Liver Injury in Clinical and Translational Hepatology: Causality Assessment Methods, Quo Vadis?. Journal of Clinical and Translational Hepatology, 2013, 1, 59-74.	1.4	18
94	Herbal hepatotoxicity and WHO global introspection method. Annals of Hepatology, 2013, 12, 11-21.	1.5	10
95	Drug induced liver injury: do we still need a routine liver biopsy for diagnosis today?. Annals of Hepatology, 2013, 13, 121-6.	1.5	15
96	Suspected Greater Celandine hepatotoxicity. European Journal of Gastroenterology and Hepatology, 2012, 24, 270-280.	1.6	43
97	Herbal hepatotoxicity: a tabular compilation of reported cases. Liver International, 2012, 32, 1543-1556.	3.9	107
98	Suspected Herbal Hepatotoxicity. Drug Safety, 2012, 35, 1091-1097.	3.2	30
99	Suspected herbal hepatotoxicity: The pharmacovigilance dilemma with disputed and obsolete evaluation methods. Regulatory Toxicology and Pharmacology, 2012, 64, 343-344.	2.7	11
100	Rare statin hepatotoxicity: Convincing evidence based on breakthrough case study. Journal of Hepatology, 2012, 57, 699-700.	3.7	5
101	Hepatotoxicity associated with statins. Annals of Hepatology, 2012, 11, 418-420.	1.5	5
102	Greater Celandine hepatotoxicity: a clinical review. Annals of Hepatology, 2012, 11, 838-848.	1.5	40
103	Initially purported hepatotoxicity by Pelargonium sidoides: the dilemma of pharmacovigilance and proposals for improvement. Annals of Hepatology, 2012, 11, 500-512.	1.5	31
104	USP suspected herbal hepatotoxicity: Quality of causality assessment is more important than quantity of counted cases, not vice versa. Pharmacoepidemiology and Drug Safety, 2012, 21, 336-338.	1.9	13
105	Kava hepatotoxicity in traditional and modern use: the presumed Pacific kava paradox hypothesis revisited. British Journal of Clinical Pharmacology, 2012, 73, 170-174.	2.4	41
106	Spontaneous reports of primarily suspected herbal hepatotoxicity by Pelargonium sidoides: Was causality adequately ascertained?. Regulatory Toxicology and Pharmacology, 2012, 63, 1-9.	2.7	40
107	Suspected Herbal Hepatotoxicity. Drug Safety, 2012, 35, 1091-1097.	3.2	15
108	Hepatotoxicity associated with statins. Annals of Hepatology, 2012, 11, 418-20.	1.5	1

#	Article	IF	Citations
109	Âlnitially purported hepatotoxicity by Pelargonium sidoides: the dilemma of pharmacovigilance and proposals for improvement. Annals of Hepatology, 2012, 11, 500-12.	1.5	16
110	Greater Celandine hepatotoxicity: a clinical review. Annals of Hepatology, 2012, 11, 838-48.	1.5	19
111	Re-introduction of Kava <i>(Piper methysticum)</i> to the EU: Is There a Way Forward?. Planta Medica, 2011, 77, 107-110.	1.3	27
112	Herbal hepatotoxicity by kava: Update on pipermethystine, flavokavain B, and mould hepatotoxins as primarily assumed culprits. Digestive and Liver Disease, 2011, 43, 676-681.	0.9	67
113	Proposal for a Kava Quality Standardization Code. Food and Chemical Toxicology, 2011, 49, 2503-2516.	3.6	51
114	Herb induced liver injury presumably caused by black cohosh: A survey of initially purported cases and herbal quality specifications. Annals of Hepatology, 2011, 10, 249-259.	1.5	50
115	Kava, the anxiolytic herb: back to basics to prevent liver injury?. British Journal of Clinical Pharmacology, 2011, 71, 445-448.	2.4	26
116	Kava hepatotoxicity solution: A six-point plan for new kava standardization. Phytomedicine, 2011, 18, 96-103.	5. 3	42
117	Regulatory causality evaluation methods applied in kava hepatotoxicity: Are they appropriate?. Regulatory Toxicology and Pharmacology, 2011, 59, 1-7.	2.7	39
118	Herbal hepatotoxicity by Greater Celandine (Chelidonium majus): Causality assessment of 22 spontaneous reports. Regulatory Toxicology and Pharmacology, 2011, 61, 282-291.	2.7	60
119	Spontaneous reports of assumed herbal hepatotoxicity by black cohosh: is the liverâ€unspecific Naranjo scale precise enough to ascertain causality?. Pharmacoepidemiology and Drug Safety, 2011, 20, 567-582.	1.9	43
120	Kava and Kava Hepatotoxicity: Requirements for Novel Experimental, Ethnobotanical and Clinical Studies Based on a Review of the Evidence. Phytotherapy Research, 2011, 25, 1263-1274.	5.8	28
121	Herb induced liver injury presumably caused by black cohosh: a survey of initially purported cases and herbal quality specifications. Annals of Hepatology, 2011, 10, 249-59.	1.5	17
122	Black cohosh and suspected hepatotoxicity. Menopause, 2010, 17, 426-440.	2.0	68
123	Letters to the Editor. Menopause, 2010, 17, 1089.	2.0	5
124	Kava hepatotoxicity: pathogenetic aspects and prospective considerations. Liver International, 2010, 30, 1270-1279.	3.9	56
125	Kava hepatotoxicity. A clinical review. Annals of Hepatology, 2010, 9, 251-265.	1.5	104
126	Risk of Kava Hepatotoxicity and the FDA Consumer Advisory. JAMA - Journal of the American Medical Association, 2010, 304, 2174.	7.4	42

#	Article	IF	CITATIONS
127	Kava hepatotoxicitya clinical review. Annals of Hepatology, 2010, 9, 251-65.	1.5	28
128	Liver failure associated with the use of black cohosh for menopausal symptoms. Medical Journal of Australia, 2009, 190, 99-100.	1.7	8
129	Hepatotoxicity by drugs and dietary supplements: safety perspectives on clinical and regulatory issues. Annals of Hepatology, 2009, 8, 184-195.	1.5	23
130	Severe hepatotoxicity by Indian Ayurvedic herbal products: A structured causality assessment. Annals of Hepatology, 2009, 8, 258-266.	1.5	84
131	Suspected hepatotoxicity by Cimicifugae racemosae rhizoma (black cohosh, root): Critical analysis and structured causality assessment. Phytomedicine, 2009, 16, 72-84.	5.3	50
132	Suspected black cohosh hepatotoxicityâ€"Challenges and pitfalls of causality assessment. Maturitas, 2009, 63, 302-314.	2.4	59
133	Reply to: Suspected black cohosh hepatotoxicity-Causality assessment versus safety signal. Quality versus quantity. Maturitas, 2009, 64, 141-142.	2.4	11
134	Kava hepatotoxicity: Comparison of aqueous, ethanolic, acetonic kava extracts and kava–herbs mixtures. Journal of Ethnopharmacology, 2009, 123, 378-384.	4.1	61
135	Black cohosh hepatotoxicity. Menopause, 2009, 16, 956-965.	2.0	32
136	Hepatotoxicity by drugs and dietary supplements: safety perspectives on clinical and regulatory issues. Annals of Hepatology, 2009, 8, 184-95.	1.5	3
137	Severe hepatotoxicity by Indian Ayurvedic herbal products: a structured causality assessment. Annals of Hepatology, 2009, 8, 258-66.	1.5	38
138	Causality assessment in hepatotoxicity by drugs and dietary supplements. British Journal of Clinical Pharmacology, 2008, 66, 758-766.	2.4	89
139	Kava hepatotoxicity: a clinical survey and critical analysis of 26 suspected cases. European Journal of Gastroenterology and Hepatology, 2008, 20, 1182-1193.	1.6	111
140	Questions regarding causality in presumed black cohosh hepatotoxicity. Delaware Medical Journal, 2008, 80, 233-4; author reply 235.	0.2	4
141	Kava hepatotoxicity: a European view. New Zealand Medical Journal, 2008, 121, 90-8.	0.5	7
142	Hepatic Thyroid Hormone Levels Following Chronic Alcohol Consumption: Direct Experimental Evidence in Rats Against the Existence of a Hyperthyroid Hepatic State. Hepatology, 2007, 3, 469-474.	7.3	21
143	Biliary excretion of gamma-glutamyltransferase. Biochemical Pharmacology, 1986, 35, 2521-2525.	4.4	18
144	Hepatic alcohol metabolizing enzymes after prolonged administration of sex hormones and alcohol in female rats. Biochemical Pharmacology, 1986, 35, 521-527.	4.4	28

#	Article	IF	Citations
145	Hepatic Microsomal Ethanol-Oxidizing System (MEOS): Metabolic Aspects and Clinical Implications. Alcoholism: Clinical and Experimental Research, 1986, 10, 20S-32S.	2.4	64
146	Alcohol Abstinence in Alcoholic Liver Disease. Acta Medica Scandinavica, 1985, 218, 185-194.	0.0	7
147	Correspondence. Does Ethanol Produce a "Hyperthyroid Hepatic State�. Hepatology, 1984, 4, 161-162.	7.3	3
148	Effect of ethanol on carbon tetrachloride levels and hepatotoxicity after acute carbon tetrachloride poisoning. Archives of Toxicology, 1984, 56, 78-82.	4.2	15
149	Effect of chronic alcohol consumption on tumor incidence due to dimethylnitrosamine administration. Journal of Cancer Research and Clinical Oncology, 1983, 106, 58-64.	2.5	32
150	Alcohol and gamma-glutamyltransferase. Klinische Wochenschrift, 1983, 61, 265-275.	0.6	22
151	Carbon tetrachloride (CCl4) levels and serum activities of liver enzymes following acute CCl4 intoxication. Toxicology Letters, 1983, 17, 175-180.	0.8	25
152	Effect of hexachlorobenzene on the activities of hepatic alcohol metabolizing enzymes. Biochemical Pharmacology, 1983, 32, 1745-1751.	4.4	15
153	Effect of an acute dose of ethanol on the hepatotoxicity due to carbon tetrachloride. Liver, 1983, 3, 100-109.	0.1	18
154	Effect of chronic alcohol consumption on the activities of liver plasma membrane enzymes: Gamma-glutamyltransferase, alkaline phosphatase and 5'-nucleotidase. Biochemical Pharmacology, 1982, 31, 377-381.	4.4	46
155	Hepatic gamma-glutamyltransferase activity: Its increase following chronic alcohol consumption and the role of carbohydrates. Biochemical Pharmacology, 1982, 31, 3751-3756.	4.4	24
156	Sex-dependency of hepatic alcohol metabolizing enzymes. Journal of Endocrinological Investigation, 1982, 5, 243-250.	3.3	28
157	Effect of Sex Hormones on the Activities of Hepatic Alcohol-Metabolizing Enzymes in Male Rats. Enzyme, 1982, 28, 268-277.	0.7	29
158	Head-space gas chromatographic analysis for rapid quantitative determination of carbon tetrachloride in blood and liver of rats. Archives of Toxicology, 1982, 51, 91-99.	4.2	9
159	Hepatic microsomal ethanol oxidizing system (MEOS): Respective roles of ethanol and carbohydrates for the enhanced activity after chronic alcohol consumption. Biochemical Pharmacology, 1981, 30, 1745-1751.	4.4	71
160	Gamma-glutamyltransferase activity of liver plasma membrane: Induction following chronic alcohol consumption. Biochemical and Biophysical Research Communications, 1981, 99, 142-148.	2.1	35
161	Hepatic Microsomal Ethanolâ€Oxidizing System (MEOS): Increased Activity Following Propylthiouracil Administration. Alcoholism: Clinical and Experimental Research, 1981, 5, 85-91.	2.4	14
162	Cholestasis following chronic alcohol consumption: Enhancement after an acute dose of chlorpromazine. Biochemical and Biophysical Research Communications, 1980, 94, 1013-1020.	2.1	11

#	Article	IF	CITATIONS
163	Increased paracetamol-induced hepatotoxicity after chronic alcohol consumption. Biochemical and Biophysical Research Communications, 1979, 91, 368-374.	2.1	54
164	Effect of thyroid hormones on the activities of hepatic alcohol metabolizing enzymes. Biochemical and Biophysical Research Communications, 1979, 89, 806-812.	2.1	28
165	[37] The Microsomal ethanol oxidizing systems (MEOS). Methods in Enzymology, 1978, 52, 355-367.	1.0	26
166	Microsomal Ethanol Oxidizing System (MEOS): Current Status of Its Characterization and Its Role. Alcoholism: Clinical and Experimental Research, 1977, 1, 7-15.	2.4	101
167	Induction of hepatic microsomal gamma-glutamyltransferase activity following chronic alcohol consumption. Biochemical and Biophysical Research Communications, 1977, 75, 718-724.	2.1	153
168	Metabolism of Alcohol at High Concentrations: Role and Biochemical Nature of the Hepatic Microsomal Ethanol Oxidizing System. Advances in Experimental Medicine and Biology, 1977, 85A, 257-280.	1.6	10
169	HEPATIC MICROSOMAL ETHANOL OXIDIZING SYSTEM: ISOLATION AND RECONSTITUTION. , 1977, , 103-110.		4
170	Hepatic ethanol metabolism: Respective roles of alcohol dehydrogenase, the microsomal ethanol-oxidizing system, and catalase. Archives of Biochemistry and Biophysics, 1976, 175, 635-643.	3.0	91
171	Increased Carbon Tetrachloride Hepatotoxicity, and its Mechanism, After Chronic Ethanol Consumption. Gastroenterology, 1974, 66, 415-422.	1.3	150
172	Hepatic microsomal ethanol-oxidizing system: Solubilization, isolation, and characterization. Archives of Biochemistry and Biophysics, 1974, 163, 404-415.	3.0	142
173	NADPH-dependent oxidation of methanol, ethanol, propanol and butanol by hepatic microsomes. Biochemical and Biophysical Research Communications, 1974, 60, 851-857.	2.1	62
174	Effect of chronic ethanol feeding on the activities and submicrosomal distribution of reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase and the demethylases for aminopyrine and ethylmorphine. Biochemical Pharmacology, 1973, 22, 1532-1535.	4.4	106
175	Efficacy and safety of integration of traditional and Western medicine for the treatment of spontaneous bacterial peritonitis in liver cirrhosis: a systematic review. AME Medical Journal, 0, 2, 138-138.	0.4	4
176	Drug-induced liver injury, mortality, and liver transplantation: is it reasonable to use a global introspection causality assessment?. AME Medical Journal, 0, 2, 144-144.	0.4	3