Yukari Ishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1872892/publications.pdf

Version: 2024-02-01

	394421	477307
1,242	19	29
citations	h-index	g-index
114	114	911
docs citations	times ranked	citing authors
	citations 114	1,242 19 citations h-index 114 114

#	Article	IF	Citations
1	A synchrotron X-ray topography study of crystallographic defects in ScAlMgO4 single crystals. Journal of Alloys and Compounds, 2022, 896, 163025.	5.5	5
2	Three-dimensional curving of crystal planes in wide bandgap semiconductor wafers visualized using a laboratory X-ray diffractometer. Journal of Crystal Growth, 2022, 583, 126558.	1.5	2
3	Mechanism of molten KOH+NaOH etching of GaN revealed by the slopes of etch pits formed at threading dislocations. Journal of Alloys and Compounds, 2022, 902, 163830.	5.5	5
4	Etch pit formation on \hat{I}^2 -Ga2O3 by molten KOH+NaOH and hot H3PO4 and their correlation with dislocations. Journal of Alloys and Compounds, 2022, 910, 164788.	5.5	5
5	Observation of dislocations in thick $\langle b \rangle \hat{l}^2 \langle b \rangle$ -Ga2O3 single-crystal substrates using Borrmann effect synchrotron x-ray topography. APL Materials, 2022, 10, .	5.1	8
6	Observation of threading dislocations with a c+m type Burgers vector in HVPE GaN substrates using multi-photon excitation photoluminescence and TEM. Journal of Crystal Growth, 2022, , 126748.	1.5	0
7	Size of dislocation patterns induced by Vickers indentation in hydride vapor-phase epitaxy GaN. Journal of Applied Physics, 2022, 131, .	2.5	7
8	Large-area total-thickness imaging and Burgers vector analysis of dislocations in $\langle b \rangle \langle i \rangle \hat{l}^2 \langle i \rangle \langle b \rangle$ -Ga2O3 using bright-field x-ray topography based on anomalous transmission. Applied Physics Letters, 2022, 121, .	3.3	5
9	Preparation of crystalline SiC coating from Si and C powder mixture using laser sublimation technique. Journal of the Ceramic Society of Japan, 2021, 129, 310-314.	1.1	O
10	Generation of dislocations from scratches on GaN formed during wafer fabrication and dislocation reactions during homoepitaxial growth. Japanese Journal of Applied Physics, 2021, 60, 115501.	1.5	5
11	X-ray topography of crystallographic defects in wide-bandgap semiconductors using a high-resolution digital camera. Japanese Journal of Applied Physics, 2021, 60, 010908.	1.5	4
12	Deep ultraviolet emission from multiple quantum wells on flat N-polar AlN templates fabricated using periodical pulsed H ₂ etching. Japanese Journal of Applied Physics, 2021, 60, 125502.	1.5	4
13	Visualization of the curving of crystal planes in \hat{I}^2 -Ga2O3 by X-ray topography. Journal of Crystal Growth, 2021, 576, 126376.	1.5	4
14	Anisotropic radius of curvature of crystal planes in wide-bandgap semiconductor wafers measured by X-ray diffraction. Japanese Journal of Applied Physics, 2021, 60, 128004.	1.5	2
15	Revelation of Dislocations in βâ€Ga ₂ O ₃ Substrates Grown by Edgeâ€Defined Filmâ€Fed Growth. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900630.	1.8	23
16	Three-Dimensional Observation of Internal Defects in a β-Ga2O3 (001) Wafer Using the FIB–SEM Serial Sectioning Method. Journal of Electronic Materials, 2020, 49, 5190-5195.	2.2	9
17	Dislocation classification of a large-area \hat{I}^2 -Ga2O3 single crystal via contrast analysis of affine-transformed X-ray topographs. Journal of Crystal Growth, 2020, 548, 125825.	1.5	6
18	Correlation between structural properties and nonradiative recombination behaviors of threading dislocations in freestanding GaN substrates grown by hydride vapor phase epitaxy. CrystEngComm, 2020, 22, 8299-8312.	2.6	13

#	Article	IF	Citations
19	Study of dislocations in AlN single-crystal using bright-field synchrotron x-ray topography under a multiple-beam diffraction condition. Applied Physics Letters, 2020, 117, 092102.	3.3	4
20	Identification of Burgers vectors of dislocations in monoclinic \hat{l}^2 -Ga2O3 via synchrotron x-ray topography. Journal of Applied Physics, 2020, 127, .	2.5	24
21	Observation of dislocations in \hat{l}^2 -Ga2O3 single-crystal substrates by synchrotron X-ray topography, chemical etching, and transmission electron microscopy. Japanese Journal of Applied Physics, 2020, 59, 045502.	1.5	18
22	Mg diffusion and activation along threading dislocations in GaN. Applied Physics Letters, 2020, 116 , .	3.3	12
23	Growth and Characterization of Nitrogenâ€Polar AlGaN/AlN Heterostructure for Highâ€Electronâ€Mobility Transistor. Physica Status Solidi (B): Basic Research, 2020, 257, 1900589.	1.5	13
24	Growth of Nâ€Polar Aluminum Nitride on Vicinal Sapphire Substrates and Aluminum Nitride Bulk Substrates. Physica Status Solidi (B): Basic Research, 2020, 257, 1900588.	1.5	17
25	Crystallinity Evaluation and Dislocation Observation for an Aluminum Nitride Single-Crystal Substrate on a Wafer Scale. Journal of Electronic Materials, 2020, 49, 5144-5153.	2.2	7
26	Screw dislocations on $\left\{1 - 2\right\}$ 12 ight $\left\{9 - 2\right\}$ pyramidal planes induced by Vickers indentation in HVPE GaN. Japanese Journal of Applied Physics, 2020, 59, 091005.	1.5	11
27	Slip planes in monoclinic \hat{l}^2 -Ga ₂ O ₃ revealed from its {010} face via synchrotron X-ray diffraction and X-ray topography. Japanese Journal of Applied Physics, 2020, 59, 125501.	1.5	18
28	Dislocation structure around Vickers indentation on GaN. The Proceedings of Mechanical Engineering Congress Japan, 2020, 2020, S16307.	0.0	0
29	Identification of fine structures at the surface of epi-ready GaN wafer observed by confocal differential interference contrast microscopy. Japanese Journal of Applied Physics, 2020, 59, 100907.	1.5	1
30	Observation of dislocations and their arrays in physical vapor transport-grown AlN single-crystal substrate by synchrotron X-ray topography. Japanese Journal of Applied Physics, 2019, 58, SCCB29.	1.5	10
31	Analysis of evolution of electron-radiation-induced defects in white-luminescent, carbonized, mesoporous silica nanocomposite using transmission electron microscopy/cathodoluminescence. Nuclear Instruments & Methods in Physics Research B, 2019, 439, 22-33.	1.4	1
32	Invited: Analysis and Detection of Dislocations in GaN., 2019,,.		0
33	X-ray diffraction and Raman characterization of \hat{l}^2 -Ga2O3 single crystal grown by edge-defined film-fed growth method. Journal of Applied Physics, 2019, 126, .	2.5	29
34	Observation of Dopant Concentration in GaN Semiconductor by High Sensitivity Electron Holography. Materia Japan, 2019, 58, 103-103.	0.1	0
35	Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Applied Physics Letters, 2018, 112, .	3.3	142
36	Expansion of a single Shockley stacking fault in a 4H-SiC ($112\hat{A}$ ⁻⁰) epitaxial layer caused by electron beam irradiation. Journal of Applied Physics, 2018, 123, .	2.5	27

3

#	Article	IF	Citations
37	Characterization of threading dislocations in GaN (0001) substrates by photoluminescence imaging, cathodoluminescence mapping and etch pits. Journal of Crystal Growth, 2017, 468, 484-488.	1.5	22
38	Observation of reaction between a-type dislocations in GaN layer grown on 4-in. Si(111) substrate with AlGaN/AlN strained layer superlattice after dislocation propagation. Journal of Crystal Growth, 2017, 468, 536-540.	1.5	8
39	Characterization of dislocations in GaN layer grown on 4-inch Si(111) with AlGaN/AlN strained layer superlattices. Japanese Journal of Applied Physics, 2016, 55, 05FB08.	1.5	12
40	Analysis of reaction between c+a and -c+a dislocations in GaN layer grown on 4-inch Si(111) substrate with AlGaN/AlN strained layer superlattice by transmission electron microscopy. AlP Advances, 2016, 6, \cdot	1.3	7
41	Characterization of Damage Induced by Electric Discharge Machining and Wiresawing with Loose Abrasive at Subsurface of SiC Crystal. Materials Science Forum, 2014, 778-780, 362-365.	0.3	O
42	Cross-sectional observation of stacking faults in 4H-SiC by KOH etching on nonpolar \${ 1ar{1}00} \$ face, cathodoluminescence imaging, and transmission electron microscopy. Japanese Journal of Applied Physics, 2014, 53, 081301.	1.5	4
43	Correlation between etch pits formed by molten KOH+Na2O2 etching and dislocation types in heavily doped n+-4Hâ€"SiC studied by X-ray topography. Journal of Crystal Growth, 2013, 364, 7-10.	1.5	13
44	Microscopic Structure of Stepwise Threading Dislocation in 4H-SiC Substrate. Japanese Journal of Applied Physics, 2012, 51, 041301.	1.5	1
45	White Photoluminescence from Carbon-Incorporated Silica Fabricated from Rice Husk. Japanese Journal of Applied Physics, 2012, 51, 01AK02.	1.5	2
46	Variation of Etch Pit Size by Screw Dislocation Tilt in 4H-SiC Wafer. Materials Science Forum, 2012, 717-720, 367-370.	0.3	4
47	Transmission Electron Microscopy Analysis of a Threading Dislocation with \$c+a\$ Burgers Vector in 4H-SiC. Applied Physics Express, 2012, 5, 081301.	2.4	36
48	White light emission from amorphous siliconâ€oxycarbide materials. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1022-1025.	1.8	6
49	White Photoluminescence from Carbon-Incorporated Silica Fabricated from Rice Husk. Japanese Journal of Applied Physics, 2012, 51, 01AK02.	1.5	4
50	Microscopic Structure of Stepwise Threading Dislocation in 4H-SiC Substrate. Japanese Journal of Applied Physics, 2012, 51, 041301.	1.5	1
51	Effects of Synthesis Process on Luminescence Properties and Structure of Mesoporous Carbon–Silica Nanocomposite. Japanese Journal of Applied Physics, 2012, 51, 082402.	1.5	19
52	White light emitting Mesoporous Carbon-Silica Nanocomposite. IOP Conference Series: Materials Science and Engineering, 2011, 18, 102019.	0.6	8
53	Preparation of light emitting material by thermal treatment of Rice Husks. IOP Conference Series: Materials Science and Engineering, 2011, 18, 102015.	0.6	4
54	Synthesis of white light emitting mesoporous carbon-silica nanocomposite. IOP Conference Series: Materials Science and Engineering, 2011, 18, 102022.	0.6	6

#	Article	IF	Citations
55	White Light Emission from Mesoporous Carbon–Silica Nanocomposites. Japanese Journal of Applied Physics, 2011, 50, 01AF06.	1.5	10
56	Molten KOH Etching with Na ₂ O ₂ Additive for Dislocation Revelation in 4H-SiC Epilayers and Substrates. Japanese Journal of Applied Physics, 2011, 50, 075502.	1.5	27
57	A simultaneous observation of dislocations in $4H-SiC$ epilayer and $n+$ -substrate by using electron beam induced current. Journal of Applied Physics, 2011, 109, .	2.5	6
58	White Light Emission from Mesoporous Carbon–Silica Nanocomposites. Japanese Journal of Applied Physics, 2011, 50, 01AF06.	1.5	12
59	Molten KOH Etching with Na ₂ O ₂ Additive for Dislocation Revelation in 4H-SiC Epilayers and Substrates. Japanese Journal of Applied Physics, 2011, 50, 075502.	1.5	19
60	The nature of white luminescence in SiO2:C layers. Technical Physics Letters, 2009, 35, 559-562.	0.7	5
61	Color control of white photoluminescence from carbon-incorporated silicon oxide. Journal of Applied Physics, 2008, 104, 083522.	2.5	42
62	Carbonization of Porous Silicon for 3C-SiC Growth. Materials Science Forum, 2007, 556-557, 167-170.	0.3	4
63	Nano-Order Structural Analysis of White Light-Emitting Silicon Oxide Prepared by Successive Thermal Carbonization/Oxidation of the Porous Silicon. Materials Science Forum, 2007, 561-565, 1127-1130.	0.3	5
64	Strong White Photoluminescence from Carbon-Incorporated Silicon Oxide Fabricated by Preferential Oxidation of Silicon in Nano-Structured Si:C Layer. Japanese Journal of Applied Physics, 2007, 46, L465-L467.	1.5	30
65	Near-Infrared Light Emissions from Er-doped ZnO Thin Films Induced by an Electrical Field. Journal of the Ceramic Society of Japan, 2007, 115, 341-343.	1.3	1
66	Boron addition effects on aluminum nitride fabricated by radio-frequency plasma-assisted molecular beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2486-2489.	0.8	5
67	Luminescent Characteristics of Undoped and Er-Doped ZnO Thin Films. Key Engineering Materials, 2006, 301, 189-192.	0.4	0
68	Growth and Characterization of AlBN Polycrystalline Thin Film by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy. Key Engineering Materials, 2006, 301, 95-98.	0.4	3
69	Near-Infrared Light Emission from of Er-Doped ZnO Thin Film in Micropits Processed on Si Substrate. Key Engineering Materials, 2006, 320, 113-116.	0.4	0
70	Structure Analyses and Electrical Properties of Er-Doped ZnO Thin Films. Key Engineering Materials, 2006, 301, 71-74.	0.4	1
71	Influence of Annealing on the $1.5\hat{l}\frac{1}{4}$ m Light Emission of Er-doped ZnO Thin Films and its Crystal Quality. Journal of Materials Research, 2005, 20, 2578-2582.	2.6	15
72	Achievement of SiGe-on-Insulator Technology. , 2005, , 65-75.		0

#	Article	IF	Citations
73	Substrate-Polarity Dependence of AlN Single-Crystal Films Grown on 6H–SiC(0001) and (000ar1) by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2003, 42, 2829-2833.	1.5	9
74	Effects of Surface Oxides of SiC on Carbon Nanotube Formation by Surface Decomposition. Japanese Journal of Applied Physics, 2003, 42, 1380-1385.	1.5	22
75	Preparation of Silicon-on-Insulator Substrate on Large Free-Standing Carbon Nanotube Film Formation by Surface Decomposition of SiC Film. Japanese Journal of Applied Physics, 2003, 42, 1717-1721.	1.5	12
76	Room-Temperature Visible Photoluminescence from Single Crystal Si Quantum Well Structures. Japanese Journal of Applied Physics, 2002, 41, 5177-5180.	1.5	3
77	Factors limiting the composition window for fabrication of SiGe-on-insulator substrate by low-energy oxygen implantation. Thin Solid Films, 2000, 369, 213-216.	1.8	7
78	Epitaxial Growth of 3C-SiC on Thin Silicon-on-Insulator Substrate by Chemical Vapor Deposition Using Alternating Gas Supply. Japanese Journal of Applied Physics, 2000, 39, L617-L619.	1.5	13
79	Creation of Highly Oriented Freestanding Carbon Nanotube Film by Sublimating Decomposition of Silicon Carbide Film. Japanese Journal of Applied Physics, 2000, 39, L1057-L1059.	1.5	9
80	SiGe-on-insulator substrate using SiGe alloy grown Si(001). Applied Physics Letters, 1999, 75, 983-985.	3.3	50
81	Fabrication of $[110]$ -aligned Si quantum wires embedded in SiO2 by low-energy oxygen implantation. Nuclear Instruments & Methods in Physics Research B, 1999, 147, 304-309.	1.4	4
82	SiGe-on-insulator substrate fabricated by low energy oxygen implantation. Nuclear Instruments & Methods in Physics Research B, 1999, 147, 43-48.	1.4	4
83	Epitaxial Si/SiO2 low dimensional structures. Thin Solid Films, 1998, 321, 234-240.	1.8	7
84	Creation of [110]-aligned Si quantum wires encompassed by SiO2 using low-energy separation-by-implanted-oxygen on a V-groove patterned substrate. Applied Physics Letters, 1998, 72, 2592-2594.	3.3	10
85	SiGe-based semiconductor-on-insulator substrate created by low-energy separation-by-implanted-oxygen. Applied Physics Letters, 1998, 72, 3485-3487.	3.3	68
86	High Resolution TEM Observation of Si Nanoparticle Interfaces Fabricated by SIMOX. Journal of the Ceramic Society of Japan, 1998, 106, 1255-1258.	1.3	1
87	Creation of Highly-Ordered Si Nanocrystal Dots Suspended inSiO2by Molecular Beam Epitaxy with Low Energy Oxygen Implantation. Japanese Journal of Applied Physics, 1997, 36, 4035-4037.	1.5	7
88	Highly oriented Si nanoparticles in SiO2 created by Si molecular beam epitaxy with oxygen implantation. Thin Solid Films, 1997, 294, 227-230.	1.8	12
89	Stratified suspension of highly ordered Si nanoparticles in SiO2 created by Si MBE with oxygen co-implantation. Journal of Crystal Growth, 1997, 175-176, 493-498.	1.5	4
90	Fabrication of highly oriented Si:SiO2 nanoparticles using low energy oxygen ion implantation during Si molecular beam epitaxy. Applied Physics Letters, 1996, 68, 2249-2251.	3.3	28

#	Article	IF	Citations
91	Epitaxyâ€ready Si/SiO2 Bragg reflectors by multiple separationâ€byâ€implantedâ€oxygen. Applied Physics Letters, 1996, 69, 3881-3883.	3.3	26
92	In Situ Transmission Electron Microscopy Observation of Au-Si Interface Reaction. Japanese Journal of Applied Physics, 1996, 35, L796-L798.	1.5	2
93	Preparation of Multilayered Thin Silicon-on-Insulator Structure Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1995, 46, 688-691.	0.2	O
94	Simultaneous Si molecular beam epitaxy and high-dose ion implantation. Journal of Crystal Growth, 1995, 150, 980-983.	1.5	5
95	Oxygen redistribution during low-energy oxygen implantation. Nuclear Instruments & Methods in Physics Research B, 1995, 95, 491-495.	1.4	6
96	Formation of Au and AuSi _x -Pyramids in Separation by Implanted Oxygen Wafers with Si Pillars in SiO ₂ Layer. Japanese Journal of Applied Physics, 1995, 34, L1478.	1.5	2
97	Formation of Au and AuSi x-Pyramids in Separation by Implanted Oxygen Wafers with Si Pillars in SiO2 Layer. Japanese Journal of Applied Physics, 1995, 34, L1478-L1481.	1.5	3
98	Formation mechanisms of dislocation and Si island in low-energy SIMOX. Nuclear Instruments & Methods in Physics Research B, 1994, 91, 520-524.	1.4	16
99	Crystallinity of AlN Film Deposited by Reactive Sputtering Method. Journal of the Ceramic Society of Japan, 1994, 102, 1079-1081.	1.3	0
100	Preparation of multilayered thin siliconâ€onâ€insulator structure by lowâ€energy oxygen ion implantation. Applied Physics Letters, 1992, 61, 1543-1545.	3.3	19
101	Growth of Aluminum Nitride Films on Silicon by Electron-Cyclotron-Resonance-Assisted Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1992, 31, L1714-L1717.	1.5	38
102	Studies of Electron-Hole Recombination Processes at Deep Levels in GaAs and GaP by Means of Transient Optical Absorption Spectroscopy. Materials Science Forum, 1991, 38-41, 1265-1270.	0.3	2
103	Preparation of Thin Silicon-on-Insulator Films by Low-Energy Oxygen Ion Implantation. Japanese Journal of Applied Physics, 1991, 30, 2427-2431.	1.5	22
104	Optically detected magnetic resonance studies of donorâ€doubleâ€acceptor recombination processes innâ€type GaP crystals. Journal of Applied Physics, 1989, 65, 2035-2041.	2.5	5
105	Characterization of Surface Defects of Highly N-Doped 4H-SiC Substrates that Produce Dislocations in the Epitaxial Layer. Materials Science Forum, 0, 645-648, 351-354.	0.3	9
106	Dislocation Revelation in Highly Doped N-Type 4 <i>H</i> -SiC by Molten KOH Etching with Na ₂ O ₂ Additive. Materials Science Forum, 0, 679-680, 290-293.	0.3	9
107	Dislocation Analysis in Highly Doped n-Type 4 <i>H</i> -SiC by Using Electron Beam Induced Current and KOH+Na ₂ O ₂ Etching. Materials Science Forum, 0, 679-680, 294-297.	0.3	9
108	Dislocation Formation in Epitaxial Film by Propagation of Shallow Dislocations on 4H-SiC Substrate. Materials Science Forum, 0, 717-720, 383-386.	0.3	6

#	Article	IF	CITATIONS
109	Characterization of Dislocation Structures in Hexagonal SiC by Transmission Electron Microscopy. Materials Science Forum, 0, 725, 11-14.	0.3	1
110	Electron Beam Induced Current Observation of Dislocations in 4H-SiC Introduced by Mechanical Polishing. Materials Science Forum, 0, 725, 23-26.	0.3	0
111	Characterization of Threading Edge Dislocation in 4H-SiC by X-Ray Topography and Transmission Electron Microscopy. Materials Science Forum, 0, 778-780, 366-369.	0.3	1
112	Elementary Screw and Mixed-Type Dislocations in 4H-SiC Characterized by X-Ray Topography Taken with Six Equivalent 11-28 <i>g</i> -Vectors and a Comparison to Etch Pit Evaluation. Materials Science Forum, 0, 897, 185-188.	0.3	3
113	AFM Observation of Etch-Pit Shapes on β-Ga ₂ O ₃ (001) Surface Formed by Molten Alkali Etching. Materials Science Forum, 0, 1004, 512-518.	0.3	5