Grant A Mcarthur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1872815/publications.pdf

Version: 2024-02-01

23879 11946 47,104 150 60 139 citations h-index g-index papers 153 153 153 44109 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Prospective comparison of volumetric post-contrast T1-Sampling Perfection with Application optimized Contrasts by using different flip angle Evolutions and Magnetization-Prepared Rapid Acquisition with Gradient Echo in patients with metastatic melanoma. Neuroradiology Journal, 2023, 36, 169-175.	0.6	1
2	Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. Journal of Clinical Oncology, 2022, 40, 127-137.	0.8	446
3	BRAF mutation testing for patients diagnosed with stage III or stage IV melanoma: practical guidance for the Australian setting. Pathology, 2022, 54, 6-19.	0.3	3
4	Triplet Therapy in Melanoma — Combined BRAF/MEK Inhibitors and Anti-PD-(L)1 Antibodies. Current Oncology Reports, 2022, 24, 1071-1079.	1.8	11
5	Characterization of the treatment-naive immune microenvironment in melanoma with <i>BRAF</i> mutation., 2022, 10, e004095.		7
6	Harnessing the immunotherapeutic potential of CDK4/6 inhibitors in melanoma: is timing everything?. Npj Precision Oncology, 2022, 6, 26.	2.3	13
7	First-In-Human Phase I Study of the OX40 Agonist MOXR0916 in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2022, 28, 3452-3463.	3.2	21
8	Combined BRAF, MEK, and CDK4/6 Inhibition Depletes Intratumoral Immune-Potentiating Myeloid Populations in Melanoma. Cancer Immunology Research, 2021, 9, 136-146.	1.6	12
9	An inverse stageâ€shift model to estimate the excess mortality and health economic impact of delayed access to cancer services due to the COVIDâ€19 pandemic. Asia-Pacific Journal of Clinical Oncology, 2021, 17, 359-367.	0.7	59
10	Decline in cancer pathology notifications during the 2020 COVIDâ€19â€related restrictions in Victoria. Medical Journal of Australia, 2021, 214, 281-283.	0.8	27
11	γδT Cells in Merkel Cell Carcinomas Have a Proinflammatory Profile Prognostic of Patient Survival. Cancer Immunology Research, 2021, 9, 612-623.	1.6	22
12	Immunomodulatory Effects of BRAF, MEK, and CDK4/6 Inhibitors: Implications for Combining Targeted Therapy and Immune Checkpoint Blockade for the Treatment of Melanoma. Frontiers in Immunology, 2021, 12, 661737.	2.2	29
13	CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-cell Memory. Cancer Discovery, 2021, 11, 2582-2601.	7.7	62
14	5-Year Outcomes with Cobimetinib plus Vemurafenib in <i>BRAF</i> V600 Mutation–Positive Advanced Melanoma: Extended Follow-up of the coBRIM Study. Clinical Cancer Research, 2021, 27, 5225-5235.	3.2	82
15	Is resistance to targeted therapy in cancer inevitable?. Cancer Cell, 2021, 39, 1047-1049.	7.7	10
16	Real-life data for first-line combination immune-checkpoint inhibition and targeted therapy in patients with melanoma brain metastases. European Journal of Cancer, 2021, 156, 149-163.	1.3	11
17	Melanoma brain metastases that progress on BRAF-MEK inhibitors demonstrate resistance to ipilimumab-nivolumab that is associated with the Innate PD-1 Resistance Signature (IPRES)., 2021, 9, e002995.		18
18	Enhancing Adoptive Cell Transfer with Combination BRAF-MEK and CDK4/6 Inhibitors in Melanoma. Cancers, 2021, 13, 6342.	1.7	4

#	Article	IF	Citations
19	High-resolution MRI demonstrates that more than 90% of small intracranial melanoma metastases develop in close relationship to the leptomeninges. Neuro-Oncology, 2020, 22, 423-432.	0.6	8
20	A Distinct Pretreatment Immune Gene Signature in Lentigo Maligna Is Associated with Imiquimod Response. Journal of Investigative Dermatology, 2020, 140, 869-877.e16.	0.3	15
21	Clinical, FDG-PET and molecular markers of immune checkpoint inhibitor response in patients with metastatic Merkel cell carcinoma., 2020, 8, e000700.		8
22	Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma., 2020, 8, e000410.		21
23	Coâ€targeting bromodomain and extraâ€terminal proteins and MCL1 induces synergistic cell death in melanoma. International Journal of Cancer, 2020, 147, 2176-2189.	2.3	16
24	Lymphatic and Hematogenous Dissemination in Patients With Primary Cutaneous Melanoma. JAMA Dermatology, 2019, 155, 1322.	2.0	0
25	Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. New England Journal of Medicine, 2019, 381, 1535-1546.	13.9	2,484
26	Molecular Genomic Profiling of MelanocyticÂNevi. Journal of Investigative Dermatology, 2019, 139, 1762-1768.	0.3	55
27	A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy. Scientific Reports, 2019, 9, 1225.	1.6	16
28	Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation. Communications Biology, 2019, 2, 39.	2.0	33
29	Bevacizumab as a steroidâ€sparing agent during immunotherapy for melanoma brain metastases: A case series. Health Science Reports, 2019, 2, e115.	0.6	29
30	Concordance of somatic mutational profile in multiple primary melanomas. Pigment Cell and Melanoma Research, 2018, 31, 592-603.	1.5	1
31	Exploring the feasibility and utility of exomeâ€scale tumour sequencing in a clinical setting. Internal Medicine Journal, 2018, 48, 786-794.	0.5	6
32	Palbociclib synergizes with BRAF and MEK inhibitors in treatment naÃ-ve melanoma but not after the development of BRAF inhibitor resistance. International Journal of Cancer, 2018, 142, 2139-2152.	2.3	56
33	Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncology, The, 2018, 19, 672-681.	5.1	732
34	Primary Tumor Thickness is a Prognostic Factor in Stage IV Melanoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2018, 41, 90-94.	0.6	8
35	Rheumatic immune-related adverse events secondary to anti–programmed death-1 antibodies and preliminary analysis on the impact of corticosteroids on anti-tumour response: A case series. European Journal of Cancer, 2018, 105, 88-102.	1.3	53
36	Tumour mutation status and melanoma recurrence following a negative sentinel lymph node biopsy. British Journal of Cancer, 2018, 118, 1289-1295.	2.9	13

#	Article	IF	CITATIONS
37	Omitting radiosurgery in melanoma brain metastases: a drastic and dangerous de-escalation – Authors' reply. Lancet Oncology, The, 2018, 19, e367.	5.1	7
38	A phase I study of panobinostat in pediatric patients with refractory solid tumors, including CNS tumors. Cancer Chemotherapy and Pharmacology, 2018, 82, 493-503.	1.1	25
39	The Advantages and Challenges of Using FDG PET/CT for Response Assessment in Melanoma in the Era of Targeted Agents and Immunotherapy. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 67-77.	3.3	112
40	Combined CDK4/6 and Pl3K \hat{l} ± Inhibition Is Synergistic and Immunogenic in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 6340-6352.	0.4	163
41	Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. New England Journal of Medicine, 2017, 377, 1345-1356.	13.9	3,589
42	Clinical and palliative care outcomes for patients of poor performance status treated with antiprogrammed death \hat{e} monoclonal antibodies for advanced melanoma. Asia-Pacific Journal of Clinical Oncology, 2017, 13, 385-390.	0.7	27
43	Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. British Journal of Cancer, 2017, 117, 1026-1035.	2.9	46
44	Circulating Tumor DNA Analysis and Functional Imaging Provide Complementary Approaches for Comprehensive Disease Monitoring in Metastatic Melanoma. JCO Precision Oncology, 2017, 1, 1-14.	1.5	51
45	Management of Melanoma. , 2017, , 15-23.		0
46	BRAF Inhibition in <i>BRAF</i> ^{V600E} -Positive Anaplastic Thyroid Carcinoma. Journal of the National Comprehensive Cancer Network: JNCCN, 2016, 14, 249-254.	2.3	38
47	Targeting metabolic reprogramming as a potential therapeutic strategy in melanoma. Pharmacological Research, 2016, 107, 42-47.	3.1	26
48	Cell Cycle Regulation and Melanoma. Current Oncology Reports, 2016, 18, 34.	1.8	48
49	A community-based model of rapid autopsy in end-stage cancer patients. Nature Biotechnology, 2016, 34, 1010-1014.	9.4	66
50	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	1.5	77
51	Combination Anti-CTLA-4 and Anti-RANKL in Metastatic Melanoma. Journal of Clinical Oncology, 2016, 34, e104-e106.	0.8	65
52	Integration of Immuno-Oncology and Palliative Care. Journal of Clinical Oncology, 2016, 34, 1561-1562.	0.8	10
53	Melanoma: the intersection of molecular targeted therapy and immune checkpoint inhibition. Current Opinion in Immunology, 2016, 39, 30-38.	2.4	23
54	Combination Therapy Targeting Ribosome Biogenesis and mRNA Translation Synergistically Extends Survival in MYC-Driven Lymphoma. Cancer Discovery, 2016, 6, 59-70.	7.7	105

#	Article	IF	CITATIONS
55	Glucocorticoids did not reverse type 1 diabetes mellitus secondary to pembrolizumab in a patient with metastatic melanoma. BMJ Case Reports, 2016, 2016, bcr2016217454.	0.2	56
56	Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget, 2016, 7, 46492-46508.	0.8	40
57	Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling. Oncotarget, 2016, 7, 49800-49818.	0.8	93
58	Combination Therapies to Inhibit the RAF/MEK/ERK Pathway in Melanoma: We are not Done Yet. Frontiers in Oncology, 2015, 5, 161.	1.3	25
59	Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. New England Journal of Medicine, 2015, 373, 23-34.	13.9	6,773
60	UV-Associated Mutations Underlie the Etiology of MCV-Negative Merkel Cell Carcinomas. Cancer Research, 2015, 75, 5228-5234.	0.4	270
61	Phenotype Switching in Melanoma: Implications for Progression and Therapy. Frontiers in Oncology, 2015, 5, 31.	1.3	138
62	Ubiquitous expression of the <i>Pik3ca ^{H1047R} </i> mutation promotes hypoglycemia, hypoinsulinemia, and organomegaly. FASEB Journal, 2015, 29, 1426-1434.	0.2	24
63	Development and validation of prognostic nomograms for metastatic gastrointestinal stromal tumour treated with imatinib. European Journal of Cancer, 2015, 51, 852-860.	1.3	23
64	Adjuvant immunotherapy for cancer: the next step. Lancet Oncology, The, 2015, 16, 478-480.	5.1	10
65	Radiotherapy Complements Immune Checkpoint Blockade. Cancer Cell, 2015, 27, 437-438.	7.7	58
66	Low-dose cyclophosphamide enhances antigen-specific CD4+ T cell responses to NY-ESO-1/ISCOMATRIXâ,,¢ vaccine in patients with advanced melanoma. Cancer Immunology, Immunotherapy, 2015, 64, 507-518.	2.0	31
67	Novel combination therapies for BRAF-mutant melanoma. Journal of Translational Medicine, 2015, 13, K6.	1.8	0
68	Melanoma. Nature Reviews Disease Primers, 2015, 1, 15003.	18.1	417
69	Cell cycle control as a promising target in melanoma. Current Opinion in Oncology, 2015, 27, 141-150.	1.1	67
70	The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Science Signaling, 2015, 8, ra82.	1.6	114
71	CDK4 inhibitors an emerging strategy for the treatment of melanoma. Melanoma Management, 2015, 2, 255-266.	0.1	14
72	Whole exome sequencing identifies a recurrent $\langle i \rangle RQCD1 \langle i \rangle P131L$ mutation in cutaneous melanoma. Oncotarget, 2015, 6, 1115-1127.	0.8	40

#	Article	IF	CITATIONS
73	Bioinformatics Pipelines for Targeted Resequencing and Whole-Exome Sequencing of Human and Mouse Genomes: A Virtual Appliance Approach for Instant Deployment. PLoS ONE, 2014, 9, e95217.	1.1	17
74	Ipilimumab in pretreated patients with unresectable or metastatic cutaneous, uveal and mucosal melanoma. Medical Journal of Australia, 2014, 201, 49-53.	0.8	52
75	Loss of <i><scp>CDKN</scp>2A</i> expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the <scp>CDK</scp> 4/6 inhibitor <scp>PD</scp> 0332991 in melanoma cell lines. Pigment Cell and Melanoma Research, 2014, 27, 590-600.	1.5	165
76	Targeted Therapies for Cutaneous Melanoma. Hematology/Oncology Clinics of North America, 2014, 28, 491-505.	0.9	11
77	Targeting the nucleolus for cancer-specific activation of p53. Drug Discovery Today, 2014, 19, 259-265.	3.2	40
78	Combined Vemurafenib and Cobimetinib in <i>BRAF</i> Mutated Melanoma. New England Journal of Medicine, 2014, 371, 1867-1876.	13.9	1,824
79	Response of <i>BRAF</i> Mutant Melanoma to BRAF Inhibition Is Mediated by a Network of Transcriptional Regulators of Glycolysis. Cancer Discovery, 2014, 4, 423-433.	7.7	242
80	Adjuvant Interferon in Melanoma: Is Duration of Therapy Important?. Journal of Clinical Oncology, 2014, 32, 171-173.	0.8	6
81	Combination of vemurafenib and cobimetinib in patients with advanced BRAFV600-mutated melanoma: a phase 1b study. Lancet Oncology, The, 2014, 15, 954-965.	5.1	225
82	Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Medical Genomics, 2014, 7, 23.	0.7	200
83	Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncology, The, 2014, 15, 323-332.	5.1	890
84	Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine) Tj ETQq0 0 0 rgBT /Overloo International Journal of Radiation Oncology Biology Physics, 2014, 88, 385-394.	ck 10 Tf 50 0.4) 307 Td (Dip 22
85	Preclinical FLT-PET and FDG-PET imaging of tumor response to the multi-targeted Aurora B kinase inhibitor, TAK-901. Nuclear Medicine and Biology, 2014, 41, 148-154.	0.3	10
86	The Drug Vehicle and Solvent N-Methylpyrrolidone Is an Immunomodulator and Antimyeloma Compound. Cell Reports, 2014, 7, 1009-1019.	2.9	34
87	A phase I study of panobinostat in pediatric patients with refractory solid tumors, including CNS tumors Journal of Clinical Oncology, 2014, 32, 10061-10061.	0.8	3
88	Randomized, double-blind phase II trial of NY-ESO-1 ISCOMATRIX vaccine and ISCOMATRIX adjuvant alone in patients with resected stage IIc, III, or IV malignant melanoma Journal of Clinical Oncology, 2014, 32, 9050-9050.	0.8	4
89	TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells. Oncotarget, 2014, 5, 10127-10139.	0.8	31
90	The Cell-Cycle Regulator CDK4: An Emerging Therapeutic Target in Melanoma. Clinical Cancer Research, 2013, 19, 5320-5328.	3.2	226

#	Article	IF	Citations
91	Targeting Oncogenic Drivers and the Immune System in Melanoma. Journal of Clinical Oncology, 2013, 31, 499-506.	0.8	98
92	Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nature Reviews Cancer, 2013, 13, 299-314.	12.8	187
93	Pharmacodynamic Effects and Mechanisms of Resistance to Vemurafenib in Patients With Metastatic Melanoma. Journal of Clinical Oncology, 2013, 31, 1767-1774.	0.8	335
94	BRAF-targeted therapy and immune responses to melanoma. Oncolmmunology, 2013, 2, e24462.	2.1	12
95	Impact of <scp>MET</scp> expression on outcome in <scp>BRAF</scp> ^{V600E/K} advanced melanoma. Histopathology, 2013, 63, 351-361.	1.6	14
96	<i>BRAF/NRAS</i> Wild-Type Melanomas Have a High Mutation Load Correlating with Histologic and Molecular Signatures of UV Damage. Clinical Cancer Research, 2013, 19, 4589-4598.	3.2	115
97	Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours. Scientific Reports, 2013, 3, 3494.	1.6	44
98	Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 2013, 123, 1371-1381.	3.9	256
99	Evaluation of cyclophosphamide as an immune enhancer for the NY-ESO-1/ISCOMATRIX vaccine in patients with metastatic melanoma Journal of Clinical Oncology, 2013, 31, 3093-3093.	0.8	0
100	Targeting NRAS in Melanoma. Cancer Journal (Sudbury, Mass), 2012, 18, 132-136.	1.0	61
101	Atypical Melanocytic Proliferations and New Primary Melanomas in Patients With Advanced Melanoma Undergoing Selective <i>BRAF</i> Inhibition. Journal of Clinical Oncology, 2012, 30, 2375-2383.	0.8	216
102	<i>RAS</i> Mutations Are Associated With the Development of Cutaneous Squamous Cell Tumors in Patients Treated With RAF Inhibitors. Journal of Clinical Oncology, 2012, 30, 316-321.	0.8	366
103	Marked, Homogeneous, and Early [¹⁸ F]Fluorodeoxyglucose–Positron Emission Tomography Responses to Vemurafenib in <i>BRAF</i> I>-Mutant Advanced Melanoma. Journal of Clinical Oncology, 2012, 30, 1628-1634.	0.8	172
104	Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. New England Journal of Medicine, 2012, 366, 707-714.	13.9	1,955
105	<i>RAS</i> Mutations in Cutaneous Squamous-Cell Carcinomas in Patients Treated with BRAF Inhibitors. New England Journal of Medicine, 2012, 366, 207-215.	13.9	978
106	The coming of age of MEK. Lancet Oncology, The, 2012, 13, 744-745.	5.1	7
107	Molecular Therapeutic Advances in Personalized Therapy of Melanoma and Non-Small Cell Lung Cancer. Journal of Personalized Medicine, 2012, 2, 35-49.	1.1	6
108	Inhibition of RNA Polymerase I as a Therapeutic Strategy to Promote Cancer-Specific Activation of p53. Cancer Cell, 2012, 22, 51-65.	7.7	468

#	Article	IF	CITATIONS
109	The Current State of Targeted Therapy in Melanoma: This Time It's Personal. Seminars in Oncology, 2012, 39, 204-214.	0.8	27
110	Updated overall survival (OS) results for BRIM-3, a phase III randomized, open-label, multicenter trial comparing BRAF inhibitor vemurafenib (vem) with dacarbazine (DTIC) in previously untreated patients with <i>BRAF^{V600E}</i> -mutated melanoma Journal of Clinical Oncology, 2012, 30, 8502-8502.	0.8	86
111	Analysis of molecular mechanisms of response and resistance to vemurafenib (vem) in <i>BRAF^{V600E}</i> melanoma Journal of Clinical Oncology, 2012, 30, 8503-8503.	0.8	19
112	An open-label, multicenter safety study of vemurafenib (PLX4032, RO5185426) in patients with metastatic melanoma Journal of Clinical Oncology, 2012, 30, 8517-8517.	0.8	11
113	Clinical significance of genomic alterations of the CDK4-pathway and sensitivity to the CDK4 inhibitor PD 0332991 in melanoma Journal of Clinical Oncology, 2012, 30, 8520-8520.	0.8	10
114	c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Research, 2011, 39, 3267-3281.	6.5	88
115	Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. New England Journal of Medicine, 2011, 364, 2507-2516.	13.9	6,976
116	Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell and Melanoma Research, 2011, 24, 666-672.	1.5	211
117	Review. Melanoma Research, 2011, 21, 257-266.	0.6	78
118	Mutation analysis for systemic mastocytosis. Pathology, 2011, 43, S44.	0.3	0
119	AKT Promotes rRNA Synthesis and Cooperates with c-MYC to Stimulate Ribosome Biogenesis in Cancer. Science Signaling, 2011, 4, ra56.	1.6	126
120	Inhibition of RNA Polymerase I Transcription by CX-5461 As a Therapeutic Strategy for the Cancer-Specific Activation of p53 in MLL-Rearranged Acute Myeloid Leukemias. Blood, 2011, 118, 1548-1548.	0.6	2
121	Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 2010, 18, 683-695.	7.7	1,139
122	BRAF, a target in melanoma. Cancer, 2010, 116, 4902-4913.	2.0	106
123	Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467, 596-599.	13.7	1,610
124	Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010, 468, 973-977.	13.7	1,944
125	Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. New England Journal of Medicine, 2010, 363, 809-819.	13.9	3,288
126	Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell and Melanoma Research, 2010, 23, 210-215.	1.5	101

#	Article	IF	CITATIONS
127	Regulatory T-Cell–Mediated Attenuation of T-Cell Responses to the NY-ESO-1 ISCOMATRIX Vaccine in Patients with Advanced Malignant Melanoma. Clinical Cancer Research, 2009, 15, 2166-2173.	3.2	119
128	Consensus approaches to best practice management of gastrointestinal stromal tumors. Asia-Pacific Journal of Clinical Oncology, 2008, 4, 188-198.	0.7	3
129	Splicing the way to leukemia with KIT. Leukemia and Lymphoma, 2008, 49, 1431-1432.	0.6	1
130	Imatinib as effective therapy for dermatofibrosarcoma protuberans: proof of concept of the autocrine hypothesis for cancer. Future Oncology, 2008, 4, 211-217.	1.1	13
131	The promise of PET in clinical management and as a sensitive test for drug cytotoxicity in sarcomas. Expert Review of Molecular Diagnostics, 2008, 8, 105-119.	1.5	7
132	Correlation of Subjective Self-reported Melanoma Growth Rate With Objective Tumor Proliferation Markers. Archives of Dermatology, 2008, 144, 555-6.	1.7	18
133	Sunitinib malate in the treatment of renal cell carcinoma and gastrointestinal stromal tumor: Recommendations for patient management*. Asia-Pacific Journal of Clinical Oncology, 2007, 3, 167-176.	0.7	14
134	Dermatofibrosarcoma Protuberans: Recent Clinical Progress. Annals of Surgical Oncology, 2007, 14, 2876-2886.	0.7	117
135	Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet, The, 2006, 368, 1329-1338.	6.3	2,349
136	Dermatofibrosarcoma protuberans: a surgical disease with a molecular savior. Current Opinion in Oncology, 2006, 18, 341-346.	1,1	40
137	Multi-tracer small animal PET imaging of the tumour response to the novel pan-Erb-B inhibitor CI-1033. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33, 441-452.	3.3	38
138	Rate of Growth in Melanomas. Archives of Dermatology, 2006, 142, 1551-8.	1.7	309
139	Cyclin-Dependent Kinase 2 Functions in Normal DNA Repair and Is a Therapeutic Target in BRCA1-Deficient Cancers. Cancer Research, 2006, 66, 8219-8226.	0.4	114
140	Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biology, 2005, 7, 172-178.	4.6	105
141	Cell Division and Hematopoietic Stem Cells: Not Always Exhausting. Cell Cycle, 2005, 4, 893-896.	1.3	15
142	Molecular and Clinical Analysis of Locally Advanced Dermatofibrosarcoma Protuberans Treated With Imatinib: Imatinib Target Exploration Consortium Study B2225. Journal of Clinical Oncology, 2005, 23, 866-873.	0.8	434
143	Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10697-10702.	3.3	411
144	MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO Journal, 2004, 23, 3325-3335.	3.5	166

#	Article	IF	CITATIONS
145	Molecularly targeted treatment for dermatofibrosarcoma protuberans. Seminars in Oncology, 2004, 31, 30-36.	0.8	67
146	EGFR blockade with ZD1839 ("lressaâ€) potentiates the antitumor effects of single and multiple fractions of ionizing radiation in human A431 squamous cell carcinoma. International Journal of Radiation Oncology Biology Physics, 2003, 55, 713-723.	0.4	110
147	In response to Drs. Krause, Baumann, and Thames. International Journal of Radiation Oncology Biology Physics, 2003, 57, 301.	0.4	0
148	mTOR-Dependent Regulation of Ribosomal Gene Transcription Requires S6K1 and Is Mediated by Phosphorylation of the Carboxy-Terminal Activation Domain of the Nucleolar Transcription Factor UBFâ€. Molecular and Cellular Biology, 2003, 23, 8862-8877.	1.1	390
149	Applications of Positron Emission Tomography in the Development of Molecular Targeted Cancer Therapeutics. BioDrugs, 2003, 17, 339-354.	2.2	20
150	MAD1 and p27 KIP1 Cooperate To Promote Terminal Differentiation of Granulocytes and To Inhibit Myc Expression and Cyclin E-CDK2 Activity. Molecular and Cellular Biology, 2002, 22, 3014-3023.	1.1	58