Grant A Mcarthur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1872815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. New England Journal of Medicine, 2011, 364, 2507-2516.	27.0	6,976
2	Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. New England Journal of Medicine, 2015, 373, 23-34.	27.0	6,773
3	Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. New England Journal of Medicine, 2017, 377, 1345-1356.	27.0	3,589
4	Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. New England Journal of Medicine, 2010, 363, 809-819.	27.0	3,288
5	Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. New England Journal of Medicine, 2019, 381, 1535-1546.	27.0	2,484
6	Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet, The, 2006, 368, 1329-1338.	13.7	2,349
7	Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. New England Journal of Medicine, 2012, 366, 707-714.	27.0	1,955
8	Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 2010, 468, 973-977.	27.8	1,944
9	Combined Vemurafenib and Cobimetinib in <i>BRAF</i> -Mutated Melanoma. New England Journal of Medicine, 2014, 371, 1867-1876.	27.0	1,824
10	Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467, 596-599.	27.8	1,610
11	Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 2010, 18, 683-695.	16.8	1,139
12	<i>RAS</i> Mutations in Cutaneous Squamous-Cell Carcinomas in Patients Treated with BRAF Inhibitors. New England Journal of Medicine, 2012, 366, 207-215.	27.0	978
13	Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncology, The, 2014, 15, 323-332.	10.7	890
14	Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncology, The, 2018, 19, 672-681.	10.7	732
15	Inhibition of RNA Polymerase I as a Therapeutic Strategy to Promote Cancer-Specific Activation of p53. Cancer Cell, 2012, 22, 51-65.	16.8	468
16	Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. Journal of Clinical Oncology, 2022, 40, 127-137.	1.6	446
17	Molecular and Clinical Analysis of Locally Advanced Dermatofibrosarcoma Protuberans Treated With Imatinib: Imatinib Target Exploration Consortium Study B2225. Journal of Clinical Oncology, 2005, 23, 866-873.	1.6	434
18	Melanoma. Nature Reviews Disease Primers, 2015, 1, 15003.	30.5	417

#	Article	IF	CITATIONS
19	Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10697-10702.	7.1	411
20	mTOR-Dependent Regulation of Ribosomal Gene Transcription Requires S6K1 and Is Mediated by Phosphorylation of the Carboxy-Terminal Activation Domain of the Nucleolar Transcription Factor UBFâ€. Molecular and Cellular Biology, 2003, 23, 8862-8877.	2.3	390
21	<i>RAS</i> Mutations Are Associated With the Development of Cutaneous Squamous Cell Tumors in Patients Treated With RAF Inhibitors. Journal of Clinical Oncology, 2012, 30, 316-321.	1.6	366
22	Pharmacodynamic Effects and Mechanisms of Resistance to Vemurafenib in Patients With Metastatic Melanoma. Journal of Clinical Oncology, 2013, 31, 1767-1774.	1.6	335
23	Rate of Growth in Melanomas. Archives of Dermatology, 2006, 142, 1551-8.	1.4	309
24	UV-Associated Mutations Underlie the Etiology of MCV-Negative Merkel Cell Carcinomas. Cancer Research, 2015, 75, 5228-5234.	0.9	270
25	Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 2013, 123, 1371-1381.	8.2	256
26	Response of <i>BRAF</i> -Mutant Melanoma to BRAF Inhibition Is Mediated by a Network of Transcriptional Regulators of Glycolysis. Cancer Discovery, 2014, 4, 423-433.	9.4	242
27	The Cell-Cycle Regulator CDK4: An Emerging Therapeutic Target in Melanoma. Clinical Cancer Research, 2013, 19, 5320-5328.	7.0	226
28	Combination of vemurafenib and cobimetinib in patients with advanced BRAFV600-mutated melanoma: a phase 1b study. Lancet Oncology, The, 2014, 15, 954-965.	10.7	225
29	Atypical Melanocytic Proliferations and New Primary Melanomas in Patients With Advanced Melanoma Undergoing Selective <i>BRAF</i> Inhibition. Journal of Clinical Oncology, 2012, 30, 2375-2383.	1.6	216
30	Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell and Melanoma Research, 2011, 24, 666-672.	3.3	211
31	Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Medical Genomics, 2014, 7, 23.	1.5	200
32	Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nature Reviews Cancer, 2013, 13, 299-314.	28.4	187
33	Marked, Homogeneous, and Early [¹⁸ F]Fluorodeoxyglucose–Positron Emission Tomography Responses to Vemurafenib in <i>BRAF</i> -Mutant Advanced Melanoma. Journal of Clinical Oncology, 2012, 30, 1628-1634.	1.6	172
34	MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO Journal, 2004, 23, 3325-3335.	7.8	166
35	Loss of <i><scp>CDKN</scp>2A</i> expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the <scp>CDK</scp> 4/6 inhibitor <scp>PD</scp> 0332991 in melanoma cell lines. Pigment Cell and Melanoma Research, 2014, 27, 590-600.	3.3	165
36	Combined CDK4/6 and PI3Kα Inhibition Is Synergistic and Immunogenic in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 6340-6352.	0.9	163

#	Article	IF	CITATIONS
37	Phenotype Switching in Melanoma: Implications for Progression and Therapy. Frontiers in Oncology, 2015, 5, 31.	2.8	138
38	AKT Promotes rRNA Synthesis and Cooperates with c-MYC to Stimulate Ribosome Biogenesis in Cancer. Science Signaling, 2011, 4, ra56.	3.6	126
39	Regulatory T-Cell–Mediated Attenuation of T-Cell Responses to the NY-ESO-1 ISCOMATRIX Vaccine in Patients with Advanced Malignant Melanoma. Clinical Cancer Research, 2009, 15, 2166-2173.	7.0	119
40	Dermatofibrosarcoma Protuberans: Recent Clinical Progress. Annals of Surgical Oncology, 2007, 14, 2876-2886.	1.5	117
41	<i>BRAF/NRAS</i> Wild-Type Melanomas Have a High Mutation Load Correlating with Histologic and Molecular Signatures of UV Damage. Clinical Cancer Research, 2013, 19, 4589-4598.	7.0	115
42	Cyclin-Dependent Kinase 2 Functions in Normal DNA Repair and Is a Therapeutic Target in BRCA1-Deficient Cancers. Cancer Research, 2006, 66, 8219-8226.	0.9	114
43	The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Science Signaling, 2015, 8, ra82.	3.6	114
44	The Advantages and Challenges of Using FDG PET/CT for Response Assessment in Melanoma in the Era of Targeted Agents and Immunotherapy. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 67-77.	6.4	112
45	EGFR blockade with ZD1839 ("Iressaâ€) potentiates the antitumor effects of single and multiple fractions of ionizing radiation in human A431 squamous cell carcinoma. International Journal of Radiation Oncology Biology Physics, 2003, 55, 713-723.	0.8	110
46	BRAF, a target in melanoma. Cancer, 2010, 116, 4902-4913.	4.1	106
47	Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biology, 2005, 7, 172-178.	10.3	105
48	Combination Therapy Targeting Ribosome Biogenesis and mRNA Translation Synergistically Extends Survival in MYC-Driven Lymphoma. Cancer Discovery, 2016, 6, 59-70.	9.4	105
49	Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell and Melanoma Research, 2010, 23, 210-215.	3.3	101
50	Targeting Oncogenic Drivers and the Immune System in Melanoma. Journal of Clinical Oncology, 2013, 31, 499-506.	1.6	98
51	Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling. Oncotarget, 2016, 7, 49800-49818.	1.8	93
52	c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Research, 2011, 39, 3267-3281.	14.5	88
53	Updated overall survival (OS) results for BRIM-3, a phase III randomized, open-label, multicenter trial comparing BRAF inhibitor vemurafenib (vem) with dacarbazine (DTIC) in previously untreated patients with <i>BRAF^{V600E}</i> -mutated melanoma Journal of Clinical Oncology, 2012, 30, 8502-8502.	1.6	86
54	5-Year Outcomes with Cobimetinib plus Vemurafenib in <i>BRAF</i> V600 Mutation–Positive Advanced Melanoma: Extended Follow-up of the coBRIM Study. Clinical Cancer Research, 2021, 27, 5225-5235.	7.0	82

#	Article	IF	CITATIONS
55	Review. Melanoma Research, 2011, 21, 257-266.	1.2	78
56	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	3.3	77
57	Molecularly targeted treatment for dermatofibrosarcoma protuberans. Seminars in Oncology, 2004, 31, 30-36.	2.2	67
58	Cell cycle control as a promising target in melanoma. Current Opinion in Oncology, 2015, 27, 141-150.	2.4	67
59	A community-based model of rapid autopsy in end-stage cancer patients. Nature Biotechnology, 2016, 34, 1010-1014.	17.5	66
60	Combination Anti-CTLA-4 and Anti-RANKL in Metastatic Melanoma. Journal of Clinical Oncology, 2016, 34, e104-e106.	1.6	65
61	CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-cell Memory. Cancer Discovery, 2021, 11, 2582-2601.	9.4	62
62	Targeting NRAS in Melanoma. Cancer Journal (Sudbury, Mass), 2012, 18, 132-136.	2.0	61
63	An inverse stageâ€shift model to estimate the excess mortality and health economic impact of delayed access to cancer services due to the COVIDâ€19 pandemic. Asia-Pacific Journal of Clinical Oncology, 2021, 17, 359-367.	1.1	59
64	MAD1 and p27 KIP1 Cooperate To Promote Terminal Differentiation of Granulocytes and To Inhibit Myc Expression and Cyclin E-CDK2 Activity. Molecular and Cellular Biology, 2002, 22, 3014-3023.	2.3	58
65	Radiotherapy Complements Immune Checkpoint Blockade. Cancer Cell, 2015, 27, 437-438.	16.8	58
66	Palbociclib synergizes with BRAF and MEK inhibitors in treatment naÃ ⁻ ve melanoma but not after the development of BRAF inhibitor resistance. International Journal of Cancer, 2018, 142, 2139-2152.	5.1	56
67	Glucocorticoids did not reverse type 1 diabetes mellitus secondary to pembrolizumab in a patient with metastatic melanoma. BMJ Case Reports, 2016, 2016, bcr2016217454.	0.5	56
68	Molecular Genomic Profiling of MelanocyticÂNevi. Journal of Investigative Dermatology, 2019, 139, 1762-1768.	0.7	55
69	Rheumatic immune-related adverse events secondary to anti–programmed death-1 antibodies and preliminary analysis on the impact of corticosteroids on anti-tumour response: A case series. European Journal of Cancer, 2018, 105, 88-102.	2.8	53
70	Ipilimumab in pretreated patients with unresectable or metastatic cutaneous, uveal and mucosal melanoma. Medical Journal of Australia, 2014, 201, 49-53.	1.7	52
71	Circulating Tumor DNA Analysis and Functional Imaging Provide Complementary Approaches for Comprehensive Disease Monitoring in Metastatic Melanoma. JCO Precision Oncology, 2017, 1, 1-14.	3.0	51
72	Cell Cycle Regulation and Melanoma. Current Oncology Reports, 2016, 18, 34.	4.0	48

#	Article	IF	CITATIONS
73	Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. British Journal of Cancer, 2017, 117, 1026-1035.	6.4	46
74	Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours. Scientific Reports, 2013, 3, 3494.	3.3	44
75	Dermatofibrosarcoma protuberans: a surgical disease with a molecular savior. Current Opinion in Oncology, 2006, 18, 341-346.	2.4	40
76	Targeting the nucleolus for cancer-specific activation of p53. Drug Discovery Today, 2014, 19, 259-265.	6.4	40
77	Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget, 2016, 7, 46492-46508.	1.8	40
78	Whole exome sequencing identifies a recurrent <i>RQCD1</i> P131L mutation in cutaneous melanoma. Oncotarget, 2015, 6, 1115-1127.	1.8	40
79	Multi-tracer small animal PET imaging of the tumour response to the novel pan-Erb-B inhibitor CI-1033. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33, 441-452.	6.4	38
80	BRAF Inhibition in <i>BRAF</i> ^{V600E} -Positive Anaplastic Thyroid Carcinoma. Journal of the National Comprehensive Cancer Network: JNCCN, 2016, 14, 249-254.	4.9	38
81	The Drug Vehicle and Solvent N-Methylpyrrolidone Is an Immunomodulator and Antimyeloma Compound. Cell Reports, 2014, 7, 1009-1019.	6.4	34
82	Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation. Communications Biology, 2019, 2, 39.	4.4	33
83	Low-dose cyclophosphamide enhances antigen-specific CD4+ T cell responses to NY-ESO-1/ISCOMATRIXâ,,¢ vaccine in patients with advanced melanoma. Cancer Immunology, Immunotherapy, 2015, 64, 507-518.	4.2	31
84	TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells. Oncotarget, 2014, 5, 10127-10139.	1.8	31
85	Bevacizumab as a steroidâ€sparing agent during immunotherapy for melanoma brain metastases: A case series. Health Science Reports, 2019, 2, e115.	1.5	29
86	Immunomodulatory Effects of BRAF, MEK, and CDK4/6 Inhibitors: Implications for Combining Targeted Therapy and Immune Checkpoint Blockade for the Treatment of Melanoma. Frontiers in Immunology, 2021, 12, 661737.	4.8	29
87	The Current State of Targeted Therapy in Melanoma: This Time It's Personal. Seminars in Oncology, 2012, 39, 204-214.	2.2	27
88	Clinical and palliative care outcomes for patients of poor performance status treated with antiprogrammed deathâ€1 monoclonal antibodies for advanced melanoma. Asia-Pacific Journal of Clinical Oncology, 2017, 13, 385-390.	1.1	27
89	Decline in cancer pathology notifications during the 2020 COVIDâ€19â€related restrictions in Victoria. Medical Journal of Australia, 2021, 214, 281-283.	1.7	27
90	Targeting metabolic reprogramming as a potential therapeutic strategy in melanoma. Pharmacological Research, 2016, 107, 42-47.	7.1	26

#	Article	IF	CITATIONS
91	Combination Therapies to Inhibit the RAF/MEK/ERK Pathway in Melanoma: We are not Done Yet. Frontiers in Oncology, 2015, 5, 161.	2.8	25
92	A phase I study of panobinostat in pediatric patients with refractory solid tumors, including CNS tumors. Cancer Chemotherapy and Pharmacology, 2018, 82, 493-503.	2.3	25
93	Ubiquitous expression of the <i> Pik3ca ^{H1047R} </i> mutation promotes hypoglycemia, hypoinsulinemia, and organomegaly. FASEB Journal, 2015, 29, 1426-1434.	0.5	24
94	Development and validation of prognostic nomograms for metastatic gastrointestinal stromal tumour treated with imatinib. European Journal of Cancer, 2015, 51, 852-860.	2.8	23
95	Melanoma: the intersection of molecular targeted therapy and immune checkpoint inhibition. Current Opinion in Immunology, 2016, 39, 30-38.	5.5	23
96	Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine) Tj ETQq0 0 0 rgBT /Overlo International Journal of Radiation Oncology Biology Physics, 2014, 88, 385-394.	ck 10 Tf 5 0.8	0 547 Td (D 22
97	Î ^{3ĵ^} T Cells in Merkel Cell Carcinomas Have a Proinflammatory Profile Prognostic of Patient Survival. Cancer Immunology Research, 2021, 9, 612-623.	3.4	22
98	Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma. , 2020, 8, e000410.		21
99	First-In-Human Phase I Study of the OX40 Agonist MOXR0916 in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2022, 28, 3452-3463.	7.0	21
100	Applications of Positron Emission Tomography in the Development of Molecular Targeted Cancer Therapeutics. BioDrugs, 2003, 17, 339-354.	4.6	20
101	Analysis of molecular mechanisms of response and resistance to vemurafenib (vem) in <i>BRAF^{V600E}</i> melanoma Journal of Clinical Oncology, 2012, 30, 8503-8503.	1.6	19
102	Correlation of Subjective Self-reported Melanoma Growth Rate With Objective Tumor Proliferation Markers. Archives of Dermatology, 2008, 144, 555-6.	1.4	18
103	Melanoma brain metastases that progress on BRAF-MEK inhibitors demonstrate resistance to ipilimumab-nivolumab that is associated with the Innate PD-1 Resistance Signature (IPRES). , 2021, 9, e002995.		18
104	Bioinformatics Pipelines for Targeted Resequencing and Whole-Exome Sequencing of Human and Mouse Genomes: A Virtual Appliance Approach for Instant Deployment. PLoS ONE, 2014, 9, e95217.	2.5	17
105	A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy. Scientific Reports, 2019, 9, 1225.	3.3	16
106	Coâ€ŧargeting bromodomain and extraâ€ŧerminal proteins and MCL1 induces synergistic cell death in melanoma. International Journal of Cancer, 2020, 147, 2176-2189.	5.1	16
107	Cell Division and Hematopoietic Stem Cells: Not Always Exhausting. Cell Cycle, 2005, 4, 893-896.	2.6	15
108	A Distinct Pretreatment Immune Gene Signature in Lentigo Maligna Is Associated with Imiquimod Response. Journal of Investigative Dermatology, 2020, 140, 869-877.e16.	0.7	15

#	Article	IF	CITATIONS
109	Sunitinib malate in the treatment of renal cell carcinoma and gastrointestinal stromal tumor: Recommendations for patient management*. Asia-Pacific Journal of Clinical Oncology, 2007, 3, 167-176.	1.1	14
110	Impact of <scp>MET</scp> expression on outcome in <scp>BRAF</scp> ^{V600E/K} advanced melanoma. Histopathology, 2013, 63, 351-361.	2.9	14
111	CDK4 inhibitors an emerging strategy for the treatment of melanoma. Melanoma Management, 2015, 2, 255-266.	0.5	14
112	Imatinib as effective therapy for dermatofibrosarcoma protuberans: proof of concept of the autocrine hypothesis for cancer. Future Oncology, 2008, 4, 211-217.	2.4	13
113	Tumour mutation status and melanoma recurrence following a negative sentinel lymph node biopsy. British Journal of Cancer, 2018, 118, 1289-1295.	6.4	13
114	Harnessing the immunotherapeutic potential of CDK4/6 inhibitors in melanoma: is timing everything?. Npj Precision Oncology, 2022, 6, 26.	5.4	13
115	BRAF-targeted therapy and immune responses to melanoma. Oncolmmunology, 2013, 2, e24462.	4.6	12
116	Combined BRAF, MEK, and CDK4/6 Inhibition Depletes Intratumoral Immune-Potentiating Myeloid Populations in Melanoma. Cancer Immunology Research, 2021, 9, 136-146.	3.4	12
117	Targeted Therapies for Cutaneous Melanoma. Hematology/Oncology Clinics of North America, 2014, 28, 491-505.	2.2	11
118	Real-life data for first-line combination immune-checkpoint inhibition and targeted therapy in patients with melanoma brain metastases. European Journal of Cancer, 2021, 156, 149-163.	2.8	11
119	An open-label, multicenter safety study of vemurafenib (PLX4032, RO5185426) in patients with metastatic melanoma Journal of Clinical Oncology, 2012, 30, 8517-8517.	1.6	11
120	Triplet Therapy in Melanoma — Combined BRAF/MEK Inhibitors and Anti-PD-(L)1 Antibodies. Current Oncology Reports, 2022, 24, 1071-1079.	4.0	11
121	Preclinical FLT-PET and FDG-PET imaging of tumor response to the multi-targeted Aurora B kinase inhibitor, TAK-901. Nuclear Medicine and Biology, 2014, 41, 148-154.	0.6	10
122	Adjuvant immunotherapy for cancer: the next step. Lancet Oncology, The, 2015, 16, 478-480.	10.7	10
123	Integration of Immuno-Oncology and Palliative Care. Journal of Clinical Oncology, 2016, 34, 1561-1562.	1.6	10
124	Is resistance to targeted therapy in cancer inevitable?. Cancer Cell, 2021, 39, 1047-1049.	16.8	10
125	Clinical significance of genomic alterations of the CDK4-pathway and sensitivity to the CDK4 inhibitor PD 0332991 in melanoma Journal of Clinical Oncology, 2012, 30, 8520-8520.	1.6	10
126	Primary Tumor Thickness is a Prognostic Factor in Stage IV Melanoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2018, 41, 90-94.	1.3	8

#	Article	IF	CITATIONS
127	High-resolution MRI demonstrates that more than 90% of small intracranial melanoma metastases develop in close relationship to the leptomeninges. Neuro-Oncology, 2020, 22, 423-432.	1.2	8
128	Clinical, FDG-PET and molecular markers of immune checkpoint inhibitor response in patients with metastatic Merkel cell carcinoma. , 2020, 8, e000700.		8
129	The promise of PET in clinical management and as a sensitive test for drug cytotoxicity in sarcomas. Expert Review of Molecular Diagnostics, 2008, 8, 105-119.	3.1	7
130	The coming of age of MEK. Lancet Oncology, The, 2012, 13, 744-745.	10.7	7
131	Omitting radiosurgery in melanoma brain metastases: a drastic and dangerous de-escalation – Authors' reply. Lancet Oncology, The, 2018, 19, e367.	10.7	7
132	Characterization of the treatment-naive immune microenvironment in melanoma with <i>BRAF</i> mutation. , 2022, 10, e004095.		7
133	Molecular Therapeutic Advances in Personalized Therapy of Melanoma and Non-Small Cell Lung Cancer. Journal of Personalized Medicine, 2012, 2, 35-49.	2.5	6
134	Adjuvant Interferon in Melanoma: Is Duration of Therapy Important?. Journal of Clinical Oncology, 2014, 32, 171-173.	1.6	6
135	Exploring the feasibility and utility of exomeâ€scale tumour sequencing in a clinical setting. Internal Medicine Journal, 2018, 48, 786-794.	0.8	6
136	Randomized, double-blind phase II trial of NY-ESO-1 ISCOMATRIX vaccine and ISCOMATRIX adjuvant alone in patients with resected stage IIc, III, or IV malignant melanoma Journal of Clinical Oncology, 2014, 32, 9050-9050.	1.6	4
137	Enhancing Adoptive Cell Transfer with Combination BRAF-MEK and CDK4/6 Inhibitors in Melanoma. Cancers, 2021, 13, 6342.	3.7	4
138	Consensus approaches to best practice management of gastrointestinal stromal tumors. Asia-Pacific Journal of Clinical Oncology, 2008, 4, 188-198.	1.1	3
139	A phase I study of panobinostat in pediatric patients with refractory solid tumors, including CNS tumors Journal of Clinical Oncology, 2014, 32, 10061-10061.	1.6	3
140	BRAF mutation testing for patients diagnosed with stage III or stage IV melanoma: practical guidance for the Australian setting. Pathology, 2022, 54, 6-19.	0.6	3
141	Inhibition of RNA Polymerase I Transcription by CX-5461 As a Therapeutic Strategy for the Cancer-Specific Activation of p53 in MLL-Rearranged Acute Myeloid Leukemias. Blood, 2011, 118, 1548-1548.	1.4	2
142	Splicing the way to leukemia with KIT. Leukemia and Lymphoma, 2008, 49, 1431-1432.	1.3	1
143	Concordance of somatic mutational profile in multiple primary melanomas. Pigment Cell and Melanoma Research, 2018, 31, 592-603.	3.3	1
144	Prospective comparison of volumetric post-contrast T1-Sampling Perfection with Application optimized Contrasts by using different flip angle Evolutions and Magnetization-Prepared Rapid Acquisition with Gradient Echo in patients with metastatic melanoma. Neuroradiology Journal, 2023, 36, 169-175.	1.2	1

#	Article	IF	CITATIONS
145	In response to Drs. Krause, Baumann, and Thames. International Journal of Radiation Oncology Biology Physics, 2003, 57, 301.	0.8	0
146	Mutation analysis for systemic mastocytosis. Pathology, 2011, 43, S44.	0.6	0
147	Novel combination therapies for BRAF-mutant melanoma. Journal of Translational Medicine, 2015, 13, K6.	4.4	0
148	Lymphatic and Hematogenous Dissemination in Patients With Primary Cutaneous Melanoma. JAMA Dermatology, 2019, 155, 1322.	4.1	0
149	Evaluation of cyclophosphamide as an immune enhancer for the NY-ESO-1/ISCOMATRIX vaccine in patients with metastatic melanoma Journal of Clinical Oncology, 2013, 31, 3093-3093.	1.6	0
150	Management of Melanoma. , 2017, , 15-23.		0