Will Lamb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1871536/publications.pdf

Version: 2024-02-01

361413 434195 1,825 31 20 31 citations h-index g-index papers 31 31 31 1153 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Strain Localization at Constant Strain Rate and Changing Stress Conditions: Implications for Plate Boundary Processes in the Upper Mantle. Minerals (Basel, Switzerland), 2021, 11, 1351.	2.0	4
2	Application of mineral equilibria to estimate fugacities of H2O, H2, and O2 in mantle xenoliths from the southwestern U.S.A American Mineralogist, 2019, 104, 333-347.	1.9	2
3	Chapter 6 Coupled deformation and melt-migration events recording subduction initiation, Dun Mountain ophiolite, New Zealand. Geological Society Memoir, 2019, 49, 93-117.	1.7	8
4	Chapter 5â€fCorrelations between a heterogeneous mantle and multiple stages of crustal growth: a review of the Dun Mountain ophiolite, New Zealand. Geological Society Memoir, 2019, 49, 75-92.	1.7	16
5	Water and Oxygen Fugacity in the Lithospheric Mantle Wedge beneath the Northern Canadian Cordillera (Alligator Lake). Geochemistry, Geophysics, Geosystems, 2018, 19, 3844-3869.	2.5	13
6	Using mineral equilibria to estimate H2O activities in peridotites from the Western Gneiss Region of Norway. American Mineralogist, 2017, 102, 1021-1036.	1.9	8
7	The Petrological and Geochemical Evolution of Early Forearc Mantle Lithosphere: an Example from the Red Hills Ultramafic Massif, New Zealand. Journal of Petrology, 2016, 57, 751-776.	2.8	19
8	Raman spectroscopic characterization of H2O in CO2-rich fluid inclusions in granulite facies metamorphic rocks. Gondwana Research, 2014, 26, 301-310.	6.0	37
9	Determination of Fe3+/Fe using the electron microprobe: A calibration for amphiboles. American Mineralogist, 2012, 97, 951-961.	1.9	21
10	The Role of Pyroxenites in Formation of Shear Instabilities in the Mantle: Evidence from an Ultramafic Ultramylonite, Twin Sisters Massif, Washington. Journal of Petrology, 2010, 51, 55-80.	2.8	54
11	Conditions during syntectonic vein formation in the footwall of the Absaroka Thrust Fault, Idaho–Wyoming–Utah fold and thrust belt. Journal of Structural Geology, 2009, 31, 1039-1057.	2.3	23
12	Amphibole equilibria in mantle rocks: Determining values of mantle aH2O and implications for mantle H2O contents. American Mineralogist, 2009, 94, 41-52.	1.9	22
13	Oxy-amphibole equilibria in Ti-bearing calcic amphiboles: Experimental investigation and petrologic implications for mantle-derived amphiboles. American Mineralogist, 2006, 91, 54-66.	1.9	36
14	Phase relations in the CH4-H2O-NaCl system at 2 kbar, 300 to 600°C as determined using synthetic fluid inclusions. Geochimica Et Cosmochimica Acta, 2002, 66, 3971-3986.	3.9	20
15	Structure and metamorphism of the Gran Paradiso massif, western Alps, Italy. Contributions To Mineralogy and Petrology, 2002, 143, 450-470.	3.1	41
16	Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic modelling and application to petroleum basins. Chemical Geology, 2001, 173, 193-205.	3.3	102
17	Deformation processes in a peridotite shear zone: reaction-softening by an H2O-deficient, continuous net transfer reaction. Tectonophysics, 1999, 303, 193-222.	2.2	131
18	Retrograde fluids in the Archean Shawmere anorthosite, Kapuskasing Structural Zone, Ontario, Canada. Contributions To Mineralogy and Petrology, 1997, 129, 105-119.	3.1	4

#	Article	IF	CITATIONS
19	The determination of phase relations in the CH4î—,H2Oî—,NaCl system at 1 kbar, 400 to 600°C using synthetic fluid inclusions. Geochimica Et Cosmochimica Acta, 1996, 60, 1885-1897.	3.9	33
20	Comparison of calcite + dolomite thermometry and carbonate + silicate equilibria; constraints on the conditions of metamorphism of the Llano Uplift, central Texas, U.S.A American Mineralogist, 1995, 80, 131-143.	1.9	30
21	Retrograde deformation within the Carthage-Colton Zone as recorded by fluid inclusions and feldspar compositions: tectonic implications for the southern Grenville Province. Contributions To Mineralogy and Petrology, 1993, 114, 379-394.	3.1	11
22	P-T-X conditions of calc-silicate formation: evidence from fluid inclusions and phase equilibria; Llano Uplift, central Texas, USA. Journal of Metamorphic Geology, 1993, 11, 89-100.	3.4	11
23	CO2-rich fluid inclusions in the Whitestone Anorthosite: implications for the retrograde history of the Parry Sound Shear Zone, Grenville Province, Canada. Journal of Metamorphic Geology, 1992, 10, 763-776.	3.4	8
24	Fluid inclusions in Adirondack granulites: Implications for the retrograde P-T path. Contributions To Mineralogy and Petrology, 1991, 107, 472-483.	3.1	34
25	Metamorphism in the Adirondacks: II. The Role of Fluids. Journal of Petrology, 1990, 31, 555-596.	2.8	195
26	P-V-T properties of fluids in the system H2O $\hat{A}\pm$ CO2 $\hat{A}\pm$ NaCl: New graphical presentations and implications for fluid inclusion studies. Geochimica Et Cosmochimica Acta, 1989, 53, 1209-1221.	3.9	443
27	Granulite facies amphibole and biotite equilibria, and calculated peak-metamorphic water activities. Contributions To Mineralogy and Petrology, 1988, 100, 349-360.	3.1	58
28	Post-metamorphic CO2-rich fluid inclusions in granulites. Contributions To Mineralogy and Petrology, 1987, 96, 485-495.	3.1	125
29	Mixing of H2O-CO2 in fluid inclusions; geobarometry and Archean gold deposits. Geochimica Et Cosmochimica Acta, 1986, 50, 847-852.	3.9	55
30	Metamorphism of reduced granulites in low-CO2 vapour-free environment. Nature, 1984, 312, 56-58.	27.8	191
31	Metamorphic fluids in the deep crust: evidence from the Adirondacks. Nature, 1983, 301, 226-228.	27.8	70