
Tamar Dayan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1870949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Partitioning of Time as an Ecological Resource. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 153-181.	8.3	697
2	On the validity of Bergmann's rule. Journal of Biogeography, 2003, 30, 331-351.	3.0	662
3	Ecological and community-wide character displacement: the next generation. Ecology Letters, 2005, 8, 875-894.	6.4	493
4	BODY MASS OF LATE QUATERNARY MAMMALS. Ecology, 2003, 84, 3403-3403.	3.2	393
5	The Evolution of Maximum Body Size of Terrestrial Mammals. Science, 2010, 330, 1216-1219.	12.6	252
6	Character Displacement, Sexual Dimprphism, and Morphological Variation among British and Irish Mustelids. Ecology, 1994, 75, 1063-1073.	3.2	187
7	Similarity of Mammalian Body Size across the Taxonomic Hierarchy and across Space and Time. American Naturalist, 2004, 163, 672-691.	2.1	173
8	Inter- and Intraspecific Character Displacement in Mustelids. Ecology, 1989, 70, 1526-1539.	3.2	164
9	Size patterns among competitors: ecological character displacement and character release in mammals, with special reference to island populations. Mammal Review, 1998, 28, 99-124.	4.8	164
10	Chronobiology by moonlight. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20123088.	2.6	140
11	Feline Canines: Community-Wide Character Displacement Among the Small Cats of Israel. American Naturalist, 1990, 136, 39-60.	2.1	135
12	The generality of the island rule reexamined. Journal of Biogeography, 2006, 33, 1571-1577.	3.0	126
13	Carnivores, biases and Bergmann's rule. Biological Journal of the Linnean Society, 2004, 81, 579-588.	1.6	118
14	Body Size of Insular Carnivores: Little Support for the Island Rule. American Naturalist, 2004, 163, 469-479.	2.1	118
15	Differential behavioural and hormonal responses of voles and spiny mice to owl calls. Animal Behaviour, 1999, 58, 1085-1093.	1.9	112
16	CHARACTER DISPLACEMENT AND RELEASE IN THE SMALL INDIAN MONGOOSE,HERPESTES JAVANICUS. Ecology, 2000, 81, 2086-2099.	3.2	110
17	On the role of phylogeny in determining activity patterns of rodents. Evolutionary Ecology, 2006, 20, 479-490.	1.2	108
18	The dietary basis for temporal partitioning: food habits of coexisting Acomys species. Oecologia, 1999, 121, 123-128.	2.0	99

#	Article	IF	CITATIONS
19	Canine carnassials: character displacement in the wolves, jackals and foxes of Israel. Biological Journal of the Linnean Society, 1992, 45, 315-331.	1.6	98
20	COEXISTENCE OF TEMPORALLY PARTITIONED SPINY MICE: ROLES OF HABITAT STRUCTURE AND FORAGING BEHAVIOR. Ecology, 2001, 82, 2164-2176.	3.2	97
21	Calibrating the paleothermometer: climate, communities, and the evolution of size. Paleobiology, 1991, 17, 189-199.	2.0	96
22	Seasonal Thermogenic Acclimation of Diurnally and Nocturnally Active Desert Spiny Mice. Physiological and Biochemical Zoology, 2000, 73, 37-44.	1.5	91
23	Early Domesticated Dogs of the Near East. Journal of Archaeological Science, 1994, 21, 633-640.	2.4	88
24	TEMPORAL PARTITIONING: AN EXPERIMENT WITH TWO SPECIES OF SPINY MICE. Ecology, 2005, 86, 164-173.	3.2	82
25	Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nature Ecology and Evolution, 2017, 1, 1889-1895.	7.8	82
26	Morphological Relationships Among Coexisting Heteromyids: An Incisive Dental Character. American Naturalist, 1994, 143, 462-477.	2.1	80
27	Variability and correlations in carnivore crania and dentition. Functional Ecology, 2005, 19, 337-343.	3.6	79
28	Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity?. Ecological Monographs, 2019, 89, e01334.	5.4	79
29	Community-Wide Assembly Patterns Unmasked: The Importance of Species' Differing Geographical Ranges. American Naturalist, 1996, 148, 997-1015.	2.1	77
30	VARIABILITY AND SEXUAL SIZE DIMORPHISM IN CARNIVORES: TESTING THE NICHE VARIATION HYPOTHESIS. Ecology, 2005, 86, 1432-1440.	3.2	73
31	The Relationship between the Golden Spiny Mouse Circadian System and Its Diurnal Activity: An Experimental Field Enclosures and Laboratory Study. Chronobiology International, 2007, 24, 599-613.	2.0	73
32	Effect of artificial night lighting on temporally partitioned spiny mice. Journal of Mammalogy, 2011, 92, 159-168.	1.3	73
33	Fish Processing During the Early Holocene: A Taphonomic Case Study from Coastal Israel. Journal of Archaeological Science, 2001, 28, 1041-1053.	2.4	70
34	Variation and covariation of skulls and teeth: modern carnivores and the interpretation of fossil mammals. Paleobiology, 2002, 28, 508-526.	2.0	69
35	Demographic Models and Reality in Reintroductions: Persian Fallow Deer in Israel. Conservation Biology, 2005, 19, 131-138.	4.7	68
36	Activity patterns of rodents: the physiological ecology of biological rhythms. Biological Rhythm Research, 2008, 39, 193-211.	0.9	65

#	Article	IF	CITATIONS
37	Area, isolation and body size evolution in insular carnivores. Ecology Letters, 2005, 8, 1211-1217.	6.4	62
38	Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biological Conservation, 2018, 226, 32-41.	4.1	62
39	Ecological and histological aspects of tail loss in spiny mice (Rodentia: Muridae, Acomys) with a review of its occurrence in rodents. Journal of Zoology, 1999, 249, 187-193.	1.7	58
40	Micromammal taphonomy of el-Wad Terrace, Mount Carmel, Israel: distinguishing cultural from natural depositional agents in the Late Natufian. Journal of Archaeological Science, 2005, 32, 1-17.	2.4	58
41	Title is missing!. Journal of Chemical Ecology, 2000, 26, 455-469.	1.8	51
42	Global change and carnivore body size: data are stasis. Global Ecology and Biogeography, 2009, 18, 240-247.	5.8	50
43	Character Displacement and Release in the Small Indian Mongoose, Herpestes javanicus. Ecology, 2000, 81, 2086.	3.2	49
44	POPULATION BIOLOGY AND SPATIAL RELATIONSHIPS OF COEXISTING SPINY MICE (ACOMYS) IN ISRAEL. Journal of Mammalogy, 2000, 81, 1046-1052.	1.3	48
45	The Natufian economy at el-Wad Terrace with special reference to gazelle exploitation patterns. Journal of Archaeological Science, 2004, 31, 217-231.	2.4	48
46	The little fire ant Wasmannia auropunctata: a new invasive species in the Middle East and its impact on the local arthropod fauna. Biological Invasions, 2010, 12, 1825-1837.	2.4	48
47	Testing the use of multivariate inter-site taphonomic comparisons: the faunal analysis of Hefzibah in its Epipalaeolithic cultural context. Journal of Archaeological Science, 2003, 30, 885-900.	2.4	47
48	Planning for Biodiversity: the Role of Ecological Impact Assessment. Conservation Biology, 2005, 19, 1254-1261.	4.7	46
49	The Epipalaeolithic Faunal Sequence in Israel: A View from Neve David. Journal of Archaeological Science, 1999, 26, 67-82.	2.4	45
50	Drivers of Infectious Disease Seasonality: Potential Implications for COVID-19. Journal of Biological Rhythms, 2021, 36, 35-54.	2.6	45
51	Reliability of a Higherâ€Taxon Approach to Richness, Rarity, and Composition Assessments at the Local Scale. Conservation Biology, 2007, 21, 1506-1515.	4.7	44
52	Non-indigenous land and freshwater gastropods in Israel. Biological Invasions, 2009, 11, 1963-1972.	2.4	44
53	Adaptive Thermoregulation in Golden Spiny Mice: The Influence of Season and Food Availability on Body Temperature. Physiological and Biochemical Zoology, 2011, 84, 175-184.	1.5	44
54	The living and the dead: How do taphonomic processes modify relative abundance and skeletal completeness of freshwater fish?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 258, 292-316.	2.3	43

#	Article	IF	CITATIONS
55	Thermal Ecology, Environments, Communities, and Global Change: Energy Intake and Expenditure in Endotherms. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 461-480.	8.3	42
56	Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent. American Naturalist, 2016, 188, 205-218.	2.1	42
57	Human Hunting and Nascent Animal Management at Middle Pre-Pottery Neolithic Yiftah'el, Israel. PLoS ONE, 2016, 11, e0156964.	2.5	40
58	Analyzing the process of domestication: Hagoshrim as a case study. Journal of Archaeological Science, 2004, 31, 1587-1601.	2.4	37
59	Gazelle exploitation in the early Neolithic site of Motza, Israel: the last of the gazelle hunters in the southern Levant. Journal of Archaeological Science, 2009, 36, 1538-1546.	2.4	37
60	Temporal partitioning among diurnally and nocturnally active desert spiny mice: energy and water turnover costs. Journal of Thermal Biology, 2001, 26, 139-142.	2.5	36
61	Telemetric field studies of body temperature and activity rhythms of Acomys russatus and A. cahirinus in the Judean Desert of Israel. Oecologia, 1999, 119, 484-492.	2.0	35
62	Saproxylic beetle assemblages in the Mediterranean region: Impact of forest management on richness and structure. Forest Ecology and Management, 2010, 259, 1376-1384.	3.2	34
63	Characteristics of the introduced fish fauna of Israel. Biological Invasions, 2007, 9, 813-824.	2.4	33
64	Biophysical Modeling of the Temporal Niche: From First Principles to the Evolution of Activity Patterns. American Naturalist, 2012, 179, 794-804.	2.1	33
65	Biogeographical patterns in the Western Palearctic: the fasting-endurance hypothesis and the status of Murphy's rule. Journal of Biogeography, 2005, 32, 369-375.	3.0	31
66	European risk governance of nanotechnology: Explaining the emerging regulatory policy. Research Policy, 2015, 44, 1527-1536.	6.4	30
67	"After 20 Yearsâ€: A Taphonomic Re-evaluation of Nahal Hadera V, an Epipalaeolithic Site on the Israeli Coastal Plain. Journal of Archaeological Science, 2002, 29, 145-156.	2.4	29
68	Interspecific Competition and Torpor in Golden Spiny Mice: Two Sides of the Energy-Acquisition Coin. Integrative and Comparative Biology, 2011, 51, 441-448.	2.0	29
69	RETINAL STRUCTURE AND FORAGING MICROHABITAT USE OF THE GOLDEN SPINY MOUSE (<i>ACOMYS) Tj ETG</i>	Qq1_1_0.78	4314 rgBT /
70	Light Masking in the Field: An Experiment with Nocturnal and Diurnal Spiny Mice Under Semi-natural Field Conditions. Chronobiology International, 2011, 28, 70-75.	2.0	25
71	The Effect of the Lunar Cycle on Fecal Cortisol Metabolite Levels and Foraging Ecology of Nocturnally and Diurnally Active Spiny Mice. PLoS ONE, 2011, 6, e23446.	2.5	25
72	The interplay between genetic and environmental effects on colony insularity in the clonal invasive little fire ant Wasmannia auropunctata. Behavioral Ecology and Sociobiology, 2009, 63, 1667-1677.	1.4	24

#	Article	IF	CITATIONS
73	Non-indigenous terrestrial vertebrates in Israel and adjacent areas. Biological Invasions, 2008, 10, 659-672.	2.4	23
74	Arthropods as a prey resource: Patterns of diel, seasonal, and spatial availability. Journal of Arid Environments, 2009, 73, 458-462.	2.4	23
75	Guild composition and mustelid morphology – character displacement but no character release. Journal of Biogeography, 2007, 34, 2148-2158.	3.0	22
76	Life on the edge: carnivore body size variation is all over the place. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1469-1476.	2.6	22
77	Ecosystem service trade-offs in wetland management: drainage and rehabilitation of the Hula, Israel. Hydrological Sciences Journal, 2011, 56, 1582-1601.	2.6	22
78	The role of the state in regulatory policy for nanomaterials risk: Analyzing the expansion of state-centric rulemaking in EU and US chemicals policies. Research Policy, 2014, 43, 169-178.	6.4	22
79	Foraging sequence, energy intake and torpor: an individualâ€based field study of energy balancing in desert golden spiny mice. Ecology Letters, 2012, 15, 1240-1248.	6.4	21
80	What determines prey selection in owls? Roles of prey traits, prey class, environmental variables, and taxonomic specialization. Ecology and Evolution, 2018, 8, 3382-3392.	1.9	21
81	Issues and dilemmas in ecological scoping: scientific, procedural and economic perspectives. Impact Assessment and Project Appraisal, 2005, 23, 55-63.	1.8	20
82	Interspecific displacement mechanisms by the invasive little fire ant Wasmannia auropunctata. Biological Invasions, 2012, 14, 851-861.	2.4	20
83	Food, Economy, and Culture at Tel Dor, Israel: A Diachronic Study of Faunal Remains from 15 Centuries of Occupation. Bulletin of the American Schools of Oriental Research, 2014, 371, 83-101.	0.2	20
84	Predictive modelling in paleoenvironmental reconstruction: The micromammals of Manot Cave, Israel. Journal of Human Evolution, 2021, 160, 102652.	2.6	19
85	Non-indigenous insect species in Israel and adjacent areas. Biological Invasions, 2007, 9, 629-643.	2.4	18
86	Taphonomic signatures of owls: New insights into micromammal assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 492, 81-91.	2.3	18
87	Opportunism or aquatic specialization? Evidence of freshwater fish exploitation at Ohalo II- A waterlogged Upper Paleolithic site. PLoS ONE, 2018, 13, e0198747.	2.5	18
88	Saproxylic beetle assemblages of three managed oak woodlands in the Eastern Mediterranean. Zoology in the Middle East, 2008, 45, 55-66.	0.6	17
89	Interbasin water transfer for the rehabilitation of a transboundary Mediterranean stream: An economic analysis. Journal of Environmental Management, 2017, 202, 276-286.	7.8	17
90	FOCUS: on the use of the petrous bone for estimating cranial abundance in fossil assemblages. Journal of Archaeological Science, 2007, 34, 1356-1360.	2.4	16

#	Article	IF	CITATIONS
91	Using spatially expanding populations as a tool for evaluating landscape planning: The reintroduced Persian fallow deer as a case study. Journal for Nature Conservation, 2008, 16, 164-174.	1.8	16
92	Using the ecosystem services concept to analyse stakeholder involvement in wetland management. Wetlands Ecology and Management, 2015, 23, 241-256.	1.5	16
93	Priority Questions and Horizon Scanning for Conservation: A Comparative Study. PLoS ONE, 2016, 11, e0145978.	2.5	16
94	Carnivore Diversity in the Late Quaternary of Israel. Quaternary Research, 1994, 41, 343-349.	1.7	15
95	A New Method of Determining Diets of Rodents. Journal of Mammalogy, 1998, 79, 1198-1202.	1.3	15
96	CAN AGGRESSION BE THE FORCE DRIVING TEMPORAL SEPARATION BETWEEN COMPETING COMMON AND GOLDEN SPINY MICE?. Journal of Mammalogy, 2006, 87, 48-53.	1.3	15
97	Predicting Grey Triggerfish Body Size from Bones. International Journal of Osteoarchaeology, 1997, 7, 150-156.	1.2	14
98	Natufian gazelles: Proto-domestication reconsidered. Journal of Archaeological Science, 1995, 22, 671-675.	2.4	13
99	The relative performance of taxonomic vs. environmental indicators for local biodiversity assessment: A comparative study. Ecological Indicators, 2012, 15, 171-180.	6.3	13
100	Fine-scale temporal and spatial population fluctuations of medium sized carnivores in a Mediterranean agricultural matrix. Landscape Ecology, 2017, 32, 1243.	4.2	13
101	Geography and Economic Preferences as Cultural Markers in a Border Town: The Faunal Remains from Tel Beth‧hemesh, Israel. International Journal of Osteoarchaeology, 2015, 25, 414-425.	1.2	11
102	From micromammals to paleoenvironments. Archaeological and Anthropological Sciences, 2018, 10, 2159-2171.	1.8	11
103	The pet and horticultural trades as introduction and dispersal agents of non-indigenous freshwater molluscs. Management of Biological Invasions, 2017, 8, 523-532.	1.2	10
104	Explaining Transatlantic Policy Divergence: The Role of Domestic Politics and Policy Styles in Nanotechnology Risk Regulation. Global Environmental Politics, 2016, 16, 79-98.	3.0	9
105	Understanding faunal contexts of a complex Tell: Tel Dor, Israel, as a case study. Journal of Archaeological Science, 2012, 39, 590-601.	2.4	8
106	A model of digestive tooth corrosion in lizards: experimental tests and taphonomic implications. Scientific Reports, 2021, 11, 12877.	3.3	8
107	Wet sieving a complex tell : Implications for retrieval protocols and studies of animal economy in historical periods. Journal of Archaeological Science, 2017, 82, 72-79.	2.4	7
108	Cattle grazing effects on mountain gazelles in Mediterranean natural landscapes. Journal of Wildlife Management, 2017, 81, 1351-1362.	1.8	7

#	Article	IF	CITATIONS
109	Increased songbird nest depredation due to Aleppo pine (Pinus halepensis) encroachment in Mediterranean shrubland. BMC Ecology, 2019, 19, 52.	3.0	7
110	Barn owls as biological control agents: potential risks to nonâ€ŧarget rare and endangered species. Animal Conservation, 2020, 23, 646-659.	2.9	7
111	Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design. Land, 2021, 10, 846.	2.9	7
112	Effect of piscivorous and omnivorous colonial birds' activity on structure, abundance and diversity of soil free-living nematodes. Preliminary results from a study of the impact of avifauna on soil biota in Israel's Mediterranean Coastal Plain. Ecological Indicators, 2019, 107, 105211.	6.3	6
113	In Its Southern Edge of Distribution, the Tawny Owl (Strix aluco) Is More Sensitive to Extreme Temperatures Than to Rural Development. Animals, 2022, 12, 641.	2.3	6
114	At the interface of historical and present-day ecology: ground beetles in woodlands and open habitats in Upper Galilee (Israel). Zoology in the Middle East, 2009, 47, 93-104.	0.6	5
115	Habitat preferences of the Levant Green Lizard, Lacerta media israelica (Peters, 1964). Zoology in the Middle East, 2011, 52, 17-28.	0.6	5
116	WEASELS FROM THE HELLENISTIC PERIOD OF ISRAEL. Israel Journal of Zoology, 2001, 47, 271-274.	0.2	4
117	Coexistence of Temporally Partitioned Spiny Mice: Roles of Habitat Structure and Foraging Behavior. Ecology, 2001, 82, 2164.	3.2	4
118	Ya'ar Bar'am—An old <i>Quercus calliprinos</i> forest of high nature conservation valuein the Mediterranean region of Israel. Israel Journal of Plant Sciences, 2009, 57, 13-23.	0.5	3
119	The role of regulatory decision-making on non-indigenous species introductions. Biological Invasions, 2010, 12, 2815-2824.	2.4	3
120	Mediterranean fruit fly subplot hot spots prediction by experts' experience. Journal of Applied Entomology, 2018, 142, 371-379.	1.8	3
121	Fitness effects of interspecific competition between two species of desert rodents. Zoology, 2018, 128, 62-68.	1.2	3
122	Environmental policy expansion in the EU: the intriguing case of bioinvasion regulation. Journal of Environmental Policy and Planning, 2020, 22, 315-327.	2.8	3
123	Risk regulation and precaution in Europe and the United States: the case of bioinvasion. Policy Sciences, 2021, 54, 3-20.	2.8	2
124	The Impact of Quaternary Paleoclimatic Change on the Carnivores of Israel. Water Science and Technology, 1993, 27, 497-504.	2.5	0
125	PERSIAN FALLOW DEER. Bulletin of the Ecological Society of America, 2005, 86, 121-123.	0.2	0