Hans-Juergen Butt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/187073/publications.pdf

Version: 2024-02-01

552 papers 37,201 citations

89 h-index 4548 171 g-index

582 all docs 582 docs citations

times ranked

582

30608 citing authors

#	Article	IF	CITATIONS
1	Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 2005, 59, 1-152.	7.2	3,040
2	Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science, 2012, 335, 67-70.	12.6	1,783
3	Calculation of thermal noise in atomic force microscopy. Nanotechnology, 1995, 6, 1-7.	2.6	1,417
4	Boundary slip in Newtonian liquids: a review of experimental studies. Reports on Progress in Physics, 2005, 68, 2859-2897.	20.1	946
5	Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophysical Journal, 1991, 60, 1438-1444.	0.5	723
6	Micromechanical cantilever-based biosensors. Sensors and Actuators B: Chemical, 2001, 79, 115-126.	7.8	664
7	Normal capillary forces. Advances in Colloid and Interface Science, 2009, 146, 48-60.	14.7	492
8	Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nature Chemistry, 2017, 9, 145-151.	13.6	469
9	Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Physical Review B, 1992, 45, 11226-11232.	3.2	441
10	Transparent, Thermally Stable and Mechanically Robust Superhydrophobic Surfaces Made from Porous Silica Capsules. Advanced Materials, 2011, 23, 2962-2965.	21.0	441
11	Surface charge printing for programmed droplet transport. Nature Materials, 2019, 18, 936-941.	27.5	401
12	How superhydrophobicity breaks down. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3254-3258.	7.1	397
13	Adhesion and Friction Forces between Spherical Micrometer-Sized Particles. Physical Review Letters, 1999, 83, 3328-3331.	7.8	365
14	Nearâ€Infraredâ€Sensitive Materials Based on Upconverting Nanoparticles. Advanced Materials, 2016, 28, 1208-1226.	21.0	347
15	Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter, 2015, 11, 7617-7626.	2.7	323
16	Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and Electrokinetic Effects. Physical Review Letters, 2002, 88, 076103.	7.8	277
17	Surface Roughness and Hydrodynamic Boundary Slip of a Newtonian Fluid in a Completely Wetting System. Physical Review Letters, 2003, 90, 144501.	7.8	274
18	Measuring the Thickness of the Liquid-like Layer on Ice Surfaces with Atomic Force Microscopy. Langmuir, 2000, 16, 6709-6714.	3.5	260

#	Article	IF	CITATIONS
19	Imaging cells with the atomic force microscope. Journal of Structural Biology, 1990, 105, 54-61.	2.8	259
20	Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump EMBO Journal, 1989, 8, 1657-1663.	7.8	252
21	When and how self-cleaning of superhydrophobic surfaces works. Science Advances, 2020, 6, eaaw9727.	10.3	242
22	How drops start sliding over solid surfaces. Nature Physics, 2018, 14, 191-196.	16.7	240
23	Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. Bioelectrochemistry, 1995, 38, 191-201.	1.0	235
24	Direct Measurement of Particleâ^'Bubble Interactions in Aqueous Electrolyte:  Dependence on Surfactant. Langmuir, 1998, 14, 3164-3174.	3.5	234
25	A Technique for Measuring the Force between a Colloidal Particle in Water and a Bubble. Journal of Colloid and Interface Science, 1994, 166, 109-117.	9.4	233
26	Atomic force microscopy. Progress in Surface Science, 1992, 41, 3-49.	8.3	220
27	Steric Forces Measured with the Atomic Force Microscope at Various Temperatures. Langmuir, 1999, 15, 2559-2565.	3.5	220
28	Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophysical Journal, 1990, 58, 1473-1480.	0.5	219
29	A Sensitive Method to Measure Changes in the Surface Stress of Solids. Journal of Colloid and Interface Science, 1996, 180, 251-260.	9.4	219
30	An Amphiphilic Ruthenium Polymetallodrug for Combined Photodynamic Therapy and Photochemotherapy In Vivo. Advanced Materials, 2017, 29, 1603702.	21.0	218
31	How Water Advances on Superhydrophobic Surfaces. Physical Review Letters, 2016, 116, 096101.	7.8	216
32	Comparative Analysis of Viscosity of Complex Liquids and Cytoplasm of Mammalian Cells at the Nanoscale. Nano Letters, 2011, 11, 2157-2163.	9.1	212
33	Electrostatic interaction in atomic force microscopy. Biophysical Journal, 1991, 60, 777-785.	0.5	210
34	Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. Journal of Materials Chemistry, 2010, 20, 1654.	6.7	208
35	The Colloidal Probe Technique and its Application to Adhesion Force Measurements. Particle and Particle Systems Characterization, 2002, 19, 129.	2.3	206
36	Scan speed limit in atomic force microscopy. Journal of Microscopy, 1993, 169, 75-84.	1.8	203

#	Article	IF	Citations
37	Design principles for superamphiphobic surfaces. Soft Matter, 2013, 9, 418-428.	2.7	196
38	Recent experimental advances for understanding bubble-particle attachment in flotation. Advances in Colloid and Interface Science, 2017, 246, 105-132.	14.7	196
39	Three-dimensional ferroelectric domain visualization by ÄŒerenkov-type second harmonic generation. Optics Express, 2010, 18, 16539.	3.4	192
40	A defective proton pump, point-mutated bacteriorhodopsin Asp96Asn is fully reactivated by azide EMBO Journal, 1989, 8, 3477-3482.	7.8	181
41	Surfactant Aggregates at a Metal Surface. Langmuir, 1997, 13, 1381-1384.	3.5	179
42	From Heterogeneous to Homogeneous Nucleation of Isotactic Poly(propylene) Confined to Nanoporous Alumina. Nano Letters, 2011, 11, 1671-1675.	9.1	179
43	Supramolecular hydrogels constructed by red-light-responsive host–guest interactions for photo-controlled protein release in deep tissue. Soft Matter, 2015, 11, 7656-7662.	2.7	169
44	Effect of Capillary Pressure and Surface Tension on the Deformation of Elastic Surfaces by Sessile Liquid Microdrops: An Experimental Investigation. Langmuir, 2008, 24, 10565-10568.	3.5	168
45	Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chemical Communications, 2015, 51, 431-434.	4.1	168
46	Lightâ€Driven Delivery and Release of Materials Using Liquid Marbles. Advanced Functional Materials, 2016, 26, 3199-3206.	14.9	168
47	Stable Hydrophobic Metalâ€Oxide Photocatalysts via Grafting Polydimethylsiloxane Brush. Advanced Materials, 2017, 29, 1604637.	21.0	164
48	Yttrium-substituted nanocrystalline TiO ₂ photoanodes for perovskite based heterojunction solar cells. Nanoscale, 2014, 6, 1508-1514.	5.6	162
49	On the Adhesion between Fine Particles and Nanocontacts:Â An Atomic Force Microscope Study. Langmuir, 2006, 22, 2171-2184.	3.5	156
50	Insights into the Adhesive Mechanisms of Tree Frogs using Artificial Mimics. Advanced Functional Materials, 2013, 23, 1137-1146.	14.9	156
51	Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry C, 2016, 120, 5724-5731.	3.1	154
52	Characterization of super liquid-repellent surfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 343-354.	7.4	151
53	Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. Biophysical Journal, 1992, 63, 578-582.	0.5	145
54	Fluorescence correlation spectroscopy in colloid and interface science. Current Opinion in Colloid and Interface Science, 2012, 17, 377-387.	7.4	142

#	Article	IF	Citations
55	Measuring the Contact Angle of Individual Colloidal Particles. Journal of Colloid and Interface Science, 1998, 208, 468-477.	9.4	141
56	Deposition of Organic Material by the Tip of a Scanning Force Microscope. Langmuir, 1995, 11, 1061-1064.	3 . 5	140
57	End-Group-Dominated Molecular Order in Self-Assembled Monolayers. The Journal of Physical Chemistry, 1995, 99, 7102-7107.	2.9	140
58	Templated Crystallisation of Calcium and Strontium Carbonates on Centred Rectangular Self-Assembled Monolayer Substrates. Chemistry - A European Journal, 1998, 4, 1834-1842.	3.3	137
59	Elastic Superhydrophobic and Photocatalytic Active Films Used as Blood Repellent Dressing. Advanced Materials, 2020, 32, e1908008.	21.0	129
60	Evaporation of sessile water/ethanol drops in a controlled environment. Physical Chemistry Chemical Physics, 2008, 10, 7150.	2.8	128
61	Measuring Electrochemically Induced Surface Stress with an Atomic Force Microscope. The Journal of Physical Chemistry, 1995, 99, 15728-15732.	2.9	126
62	Efficient Platinumâ€Free Counter Electrodes for Dyeâ€Sensitized Solar Cell Applications. ChemPhysChem, 2010, 11, 2814-2819.	2.1	124
63	Dynamic Measurement of the Force Required to Move a Liquid Drop on a Solid Surface. Langmuir, 2012, 28, 16812-16820.	3 . 5	119
64	Torrent Frogâ€Inspired Adhesives: Attachment to Flooded Surfaces. Advanced Functional Materials, 2015, 25, 1499-1505.	14.9	119
65	Photon Upconversion Lithography: Patterning of Biomaterials Using Nearâ€Infrared Light. Advanced Materials, 2015, 27, 2203-2206.	21.0	119
66	Interaction Forces between Hydrophobic Surfaces. Attractive Jump as an Indication of Formation of "Stable―Submicrocavities. Journal of Physical Chemistry B, 2000, 104, 3407-3410.	2.6	118
67	Flexible Minerals: Self-Assembled Calcite Spicules with Extreme Bending Strength. Science, 2013, 339, 1298-1302.	12.6	118
68	Ultrafast Processing of Hierarchical Nanotexture for a Transparent Superamphiphobic Coating with Extremely Low Rollâ€Off Angle and High Impalement Pressure. Advanced Materials, 2018, 30, e1706529.	21.0	117
69	Height calibration of optical lever atomic force microscopes by simple laser interferometry. Review of Scientific Instruments, 1995, 66, 1258-1259.	1.3	115
70	Capillary Forces:  Influence of Roughness and Heterogeneity. Langmuir, 2008, 24, 4715-4721.	3.5	115
71	The Softer the Better: Fast Condensation on Soft Surfaces. Langmuir, 2010, 26, 1544-1547.	3. 5	108
72	The application of atomic force microscopy in mineral flotation. Advances in Colloid and Interface Science, 2018, 256, 373-392.	14.7	108

#	Article	IF	Citations
73	Multiple nucleation events and local dynamics of poly ($\hat{l}\mu$ -caprolactone) (PCL) confined to nanoporous alumina. Soft Matter, 2013, 9, 9189.	2.7	107
74	Homogeneous crystallization and local dynamics of poly(ethylene oxide) (PEO) confined to nanoporous alumina. Soft Matter, 2013, 9, 2621.	2.7	107
75	Light-Switchable Polymer Adhesive Based on Photoinduced Reversible Solid-to-Liquid Transitions. ACS Macro Letters, 2019, 8, 968-972.	4.8	107
76	Rupture of molecular thin films observed in atomic force microscopy. I. Theory. Physical Review E, 2002, 66, 031601.	2.1	106
77	Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. Langmuir, 2019, 35, 10689-10703.	3.5	105
78	Rupture of molecular thin films observed in atomic force microscopy. II. Experiment. Physical Review E, 2002, 66, 031602.	2.1	103
79	Liquid Drops Impacting Superamphiphobic Coatings. Langmuir, 2013, 29, 7847-7856.	3.5	103
80	Humidity-Induced Grain Boundaries in MAPbI ₃ Perovskite Films. Journal of Physical Chemistry C, 2016, 120, 6363-6368.	3.1	103
81	Structure of Alkyl and Perfluoroalkyl Disulfide and Azobenzenethiol Monolayers on Gold(111) Revealed by Atomic Force Microscopy. The Journal of Physical Chemistry, 1996, 100, 2290-2301.	2.9	99
82	Visible Mie Scattering in Nonabsorbing Hollow Sphere Powders. Nano Letters, 2011, 11, 1389-1394.	9.1	99
83	Super liquid-repellent gas membranes for carbon dioxide capture and heart–lung machines. Nature Communications, 2013, 4, 2512.	12.8	98
84	Tip penetration through lipid bilayers in atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2002, 23, 191-200.	5.0	97
85	Direct measurement of forces between particles and bubbles. International Journal of Mineral Processing, 1999, 56, 99-115.	2.6	94
86	Suppression of Phase Transitions in a Confined Rodlike Liquid Crystal. ACS Nano, 2011, 5, 9208-9215.	14.6	92
87	Evaporation dynamics of sessile liquid drops in still air with constant contact radius. International Journal of Heat and Mass Transfer, 2008, 51, 3696-3699.	4.8	91
88	Superhydrophobic surfaces by hybrid raspberry-like particles. Faraday Discussions, 2010, 146, 35.	3.2	91
89	Synthesis of Mesoporous Supraparticles on Superamphiphobic Surfaces. Advanced Materials, 2015, 27, 7338-7343.	21.0	91
90	Quantitative scanning tunneling microscopy and scanning force microscopy of organic materials. Ultramicroscopy, 1992, 46, 375-393.	1.9	90

#	Article	IF	CITATIONS
91	Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Lightâ€Emitting Diodes. Advanced Materials, 2009, 21, 5022-5026.	21.0	90
92	Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. Macromolecules, 2016, 49, 7400-7414.	4.8	90
93	Fighting against Drugâ€Resistant Tumors using a Dualâ€Responsive Pt(IV)/Ru(II) Bimetallic Polymer. Advanced Materials, 2020, 32, e2004766.	21.0	89
94	Dynamic effects on force measurements. I. Viscous drag on the atomic force microscope cantilever. Review of Scientific Instruments, 2001, 72, 2330-2339.	1.3	88
95	Confined Diffusion in Periodic Porous Nanostructures. ACS Nano, 2011, 5, 4607-4616.	14.6	88
96	Rutheniumâ€Containing Block Copolymer Assemblies:ÂRedâ€Lightâ€Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy. Advanced Healthcare Materials, 2016, 5, 467-473.	7.6	87
97	Using the Atomic Force Microscope to Study the Interaction between Two Solid Supported Lipid Bilayers and the Influence of Synapsin I. Biophysical Journal, 2004, 87, 2446-2455.	0.5	86
98	Local Flow Field and Slip Length of Superhydrophobic Surfaces. Physical Review Letters, 2016, 116, 134501.	7.8	86
99	Attraction between hydrophobic surfaces studied by atomic force microscopy. International Journal of Mineral Processing, 2003, 72, 215-225.	2.6	85
100	Influence of Bindingâ€Site Density in Wet Bioadhesion. Advanced Materials, 2008, 20, 3872-3876.	21.0	85
101	Self-Assembled Monolayers of Symmetrical and Mixed Alkyl Fluoroalkyl Disulfides on Gold. 2. Investigation of Thermal Stability and Phase Separation. Langmuir, 1996, 12, 3898-3904.	3.5	84
102	Tilt of Atomic Force Microscope Cantilevers:Â Effect on Spring Constant and Adhesion Measurements. Langmuir, 2004, 20, 2760-2764.	3.5	84
103	Self-Assembled Monolayers of Discotic Liquid Crystalline Thioethers, Discoid Disulfides, and Thiols on Gold:Â Molecular Engineering of Ordered Surfaces. Journal of the American Chemical Society, 1996, 118, 13051-13057.	13.7	83
104	Pressure-sensitive adhesive powder. Materials Horizons, 2016, 3, 47-52.	12.2	83
105	Redâ€Lightâ€Controlled Release of Drug–Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments. Advanced Functional Materials, 2018, 28, 1804227.	14.9	82
106	Entangled Azobenzeneâ€Containing Polymers with Photoinduced Reversible Solidâ€toâ€Liquid Transitions for Healable and Reprocessable Photoactuators. Advanced Functional Materials, 2020, 30, 1906752.	14.9	82
107	Fabrication of Anticounterfeiting Nanocomposites with Multiple Security Features via Integration of a Photoresponsive Polymer and Upconverting Nanoparticles. Advanced Functional Materials, 2021, 31, 2103908.	14.9	82
108	Effect of Local and Global Structural Order on the Performance of Perylene Diimide Excimeric Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11844-11857.	8.0	81

#	Article	IF	Citations
109	Supramolecular Thiophene Nanosheets. Angewandte Chemie - International Edition, 2013, 52, 4845-4848.	13.8	81
110	Segregation in Drying Binary Colloidal Droplets. ACS Nano, 2019, 13, 4972-4979.	14.6	81
111	Contact angle hysteresis. Current Opinion in Colloid and Interface Science, 2022, 59, 101574.	7.4	81
112	Force Measurements on Myelin Basic Protein Adsorbed to Mica and Lipid Bilayer Surfaces Done with the Atomic Force Microscope. Biophysical Journal, 1999, 76, 1072-1079.	0.5	80
113	Self-Assembly, Molecular Dynamics, and Kinetics of Structure Formation in Dipole-Functionalized Discotic Liquid Crystals. Journal of the American Chemical Society, 2008, 130, 5311-5319.	13.7	80
114	One-Dimensional Hypersonic Phononic Crystals. Nano Letters, 2010, 10, 980-984.	9.1	80
115	Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions. Langmuir, 2015, 31, 7317-7327.	3.5	80
116	Direct measurements of particle–bubble interactions. Advances in Colloid and Interface Science, 2005, 114-115, 165-172.	14.7	79
117	On the Derivation of Young's Equation for Sessile Drops:Â Nonequilibrium Effects Due to Evaporation. Journal of Physical Chemistry B, 2007, 111, 5277-5283.	2.6	79
118	Plasmon Hybridization in Stacked Double Crescents Arrays Fabricated by Colloidal Lithography. Nano Letters, 2011, 11, 446-454.	9.1	79
119	Fabrication of microvessels and microlenses from polymers by solvent droplets. Applied Physics Letters, 2005, 86, 124101.	3.3	77
120	Organization of Charge-Carrier Pathways for Organic Electronics. Advanced Materials, 2006, 18, 2255-2259.	21.0	77
121	Electrical Modes in Scanning Probe Microscopy. Macromolecular Rapid Communications, 2009, 30, 1167-1178.	3.9	77
122	Submicrometer-Sized Roughness Suppresses Bacteria Adhesion. ACS Applied Materials & Suppresses Bacteri	8.0	77
123	Oneâ€Step Synthesis of a Durable and Liquidâ€Repellent Poly(dimethylsiloxane) Coating. Advanced Materials, 2021, 33, e2100237.	21.0	77
124	Adsorption of Membrane-Associated Proteins to Lipid Bilayers Studied with an Atomic Force Microscope:Â Myelin Basic Protein and Cytochromec. Journal of Physical Chemistry B, 2000, 104, 4552-4559.	2.6	76
125	Impact of atomic force microscopy on interface and colloid science. Advances in Colloid and Interface Science, 2007, 133, 91-104.	14.7	76
126	Grafting Silicone at Room Temperature—a Transparent, Scratch-resistant Nonstick Molecular Coating. Langmuir, 2020, 36, 4416-4431.	3.5	76

#	Article	IF	Citations
127	Imaging metal atoms in air and water using the atomic force microscope. Applied Physics Letters, 1990, 56, 1758-1759.	3.3	7 5
128	Wetting on the Microscale: Shape of a Liquid Drop on a Microstructured Surface at Different Length Scales. Langmuir, 2012, 28, 8392-8398.	3.5	74
129	Upconvertingâ€Nanoparticleâ€Assisted Photochemistry Induced by Lowâ€Intensity Nearâ€Infrared Light: How Low Can We Go?. Chemistry - A European Journal, 2015, 21, 9165-9170.	3.3	74
130	A Photocatalytically Active Lubricantâ€Impregnated Surface. Angewandte Chemie - International Edition, 2017, 56, 4965-4969.	13.8	72
131	Surface Properties of Ice Studied by Atomic Force Microscopy. Journal of Physical Chemistry B, 1998, 102, 7813-7819.	2.6	71
132	Two-Dimensional Structure of Disulfides and Thiols on Gold(111). Langmuir, 1998, 14, 808-815.	3.5	71
133	Mercaptophenol-Protected Gold Colloids as Nuclei for the Crystallization of Inorganic Minerals:Â Templated Crystallization on Curved Surfaces. Chemistry of Materials, 1999, 11, 1317-1325.	6.7	71
134	Changes in surface stress at the liquid/solid interface measured with a microcantilever. Electrochimica Acta, 2000, 46, 157-163.	5.2	71
135	Ultrafine cohesive powders: From interparticle contacts to continuum behaviour. Chemical Engineering Science, 2007, 62, 2843-2864.	3.8	71
136	Particle Formation in the Emulsionâ€Solvent Evaporation Process. Small, 2013, 9, 3514-3522.	10.0	71
137	Microdrops on Atomic Force Microscope Cantilevers:Â Evaporation of Water and Spring Constant Calibration. Journal of Physical Chemistry B, 2005, 109, 253-263.	2.6	70
138	Crystallization of Vaterite Nanowires by the Cooperative Interaction of Tailor-Made Nucleation Surfaces and Polyelectrolytes. Advanced Functional Materials, 2005, 15, 683-688.	14.9	69
139	Transfer of Materials from Water to Solid Surfaces Using Liquid Marbles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33351-33359.	8.0	69
140	Forces between polystyrene surfaces in water–electrolyte solutions: Long-range attraction of two types?. Journal of Chemical Physics, 2001, 114, 8124-8131.	3.0	68
141	Enhancing CO ₂ Capture using Robust Superomniphobic Membranes. Advanced Materials, 2017, 29, 1603524.	21.0	68
142	Capillary forces between soft, elastic spheres. Soft Matter, 2010, 6, 5930.	2.7	67
143	Measuring normal and friction forces acting on individual fine particles. Review of Scientific Instruments, 2001, 72, 4164-4170.	1.3	66
144	Confined Liquids:  Solvation Forces in Liquid Alcohols between Solid Surfaces. Journal of Physical Chemistry B, 2002, 106, 1703-1708.	2.6	66

#	Article	IF	Citations
145	Measuring Single Small Molecule Binding via Rupture Forces of a Split Aptamer. Journal of the American Chemical Society, 2011, 133, 2025-2027.	13.7	66
146	Adaptive Wetting—Adaptation in Wetting. Langmuir, 2018, 34, 11292-11304.	3.5	66
147	Slide electrification: charging of surfaces by moving water drops. Soft Matter, 2019, 15, 8667-8679.	2.7	66
148	How to Coat the Inside of Narrow and Long Tubes with a Super‣iquidâ€Repellent Layer—A Promising Candidate for Antibacterial Catheters. Advanced Materials, 2019, 31, e1801324.	21.0	65
149	Polyhedral Liquid Marbles. Advanced Functional Materials, 2019, 29, 1808826.	14.9	64
150	Shaping the Assembly of Superparamagnetic Nanoparticles. ACS Nano, 2019, 13, 3015-3022.	14.6	64
151	Engineering the Hypersonic Phononic Band Gap of Hybrid Bragg Stacks. Nano Letters, 2012, 12, 3101-3108.	9.1	63
152	Supramolecular Organogel Based on Crown Ether and Secondary Ammoniumion Functionalized Glycidyl Triazole Polymers. Macromolecules, 2013, 46, 4617-4625.	4.8	63
153	Suppression of Poly(ethylene oxide) Crystallization in Diblock Copolymers of Poly(ethylene) Tj ETQq1 1 0.784314 1793-1800.	rgBT /Ove 4.8	erlock 10 Tf 63
154	Reversible Janus particle assembly via responsive host–guest interactions. Chemical Communications, 2015, 51, 2725-2727.	4.1	62
155	Optimizing Hydrophobicity and Photocatalytic Activity of PDMS-Coated Titanium Dioxide. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27422-27425.	8.0	62
156	Spontaneous charging affects the motion of sliding drops. Nature Physics, 2022, 18, 713-719.	16.7	62
157	Using capillary forces to determine the geometry of nanocontacts. Journal of Applied Physics, 2006, 100, 024312.	2.5	61
158	Porous supraparticle assembly through self-lubricating evaporating colloidal ouzo drops. Nature Communications, 2019, 10, 478.	12.8	61
159	Construction of Redispersible Polypyrrole Core–Shell Nanoparticles for Application in Polymer Electronics. Advanced Materials, 2009, 21, 1137-1141.	21.0	60
160	Homogeneous Nucleation of Predominantly Cubic Ice Confined in Nanoporous Alumina. Nano Letters, 2015, 15, 1987-1992.	9.1	60
161	The atomic force microscope: A tool for science and industry. Ultramicroscopy, 1990, 33, 93-98.	1.9	59
162	Reconfiguring surface functions using visible-light-controlled metal-ligand coordination. Nature Communications, 2018, 9, 3842.	12.8	59

#	Article	IF	Citations
163	Transition in the Evaporation Kinetics of Water Microdrops on Hydrophilic Surfaces. Langmuir, 2009, 25, 75-78.	3.5	58
164	Measuring Electrostatic Double-Layer Forces at High Surface Potentials with the Atomic Force Microscope. The Journal of Physical Chemistry, 1996, 100, 16700-16705.	2.9	57
165	Energy Dissipation of Moving Drops on Superhydrophobic and Superoleophobic Surfaces. Langmuir, 2017, 33, 107-116.	3.5	57
166	The challenge of lubricant-replenishment on lubricant-impregnated surfaces. Advances in Colloid and Interface Science, 2021, 287, 102329.	14.7	56
167	Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nature Communications, 2018, 9, 5306.	12.8	55
168	Tuning the Porosity of Supraparticles. ACS Nano, 2019, 13, 13949-13956.	14.6	55
169	Latex film formation studied with the atomic force microscope: Influence of aging and annealing. Colloid and Polymer Science, 1994, 272, 1218-1223.	2.1	54
170	Contact angles on hydrophobic microparticles at water–air and water–hexadecane interfaces. Journal of Adhesion Science and Technology, 2000, 14, 1783-1799.	2.6	54
171	Removal of Surface Oxygen Vacancies Increases Conductance Through TiO ₂ Thin Films for Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 13458-13466.	3.1	54
172	Microsphere tensiometry to measure advancing and receding contact angles on individual particles. Journal of Adhesion Science and Technology, 1999, 13, 1181-1191.	2.6	53
173	Confined liquid: Simultaneous observation of a molecularly layered structure and hydrodynamic slip. Journal of Chemical Physics, 2002, 117, 10311-10314.	3.0	53
174	Metallopolymer Organohydrogels with Photoâ€Controlled Coordination Crosslinks Work Properly Below 0 °C. Advanced Materials, 2020, 32, e1908324.	21.0	53
175	Dynamics of condensation and evaporation: Effect of inter-drop spacing. Europhysics Letters, 2010, 89, 36004.	2.0	52
176	Probing mobility and structural inhomogeneities in grafted hydrogel films by fluorescence correlation spectroscopy. Soft Matter, 2011, 7, 7042.	2.7	52
177	Effect of surface roughness of carbon support films on high-resolution electron diffraction of two-dimensional protein crystals. Ultramicroscopy, 1991, 36, 307-318.	1.9	51
178	Nanowear on Polymer Films of Different Architecture. Langmuir, 2007, 23, 3150-3156.	3.5	51
179	Preliminary results on the electrostatic double-layer force between two surfaces with high surface potentials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 191-197.	4.7	50
180	Influence of Humidity on Adhesion: An Atomic Force Microscope Study. Journal of Adhesion Science and Technology, 2008, 22, 181-203.	2.6	50

#	Article	IF	CITATIONS
181	Arrays of Aligned Supramolecular Wires by Macroscopic Orientation of Columnar Discotic Mesophases. ACS Nano, 2012, 6, 9359-9365.	14.6	50
182	Soft Janus Colloidal Crystal Film. Angewandte Chemie - International Edition, 2012, 51, 9809-9813.	13.8	50
183	Complex Tracer Diffusion Dynamics in Polymer Solutions. Physical Review Letters, 2013, 111, 088301.	7.8	50
184	Adaptive Wetting of Polydimethylsiloxane. Langmuir, 2020, 36, 7236-7245.	3.5	50
185	Fluorescence Correlation Spectroscopy Directly Monitors Coalescence During Nanoparticle Preparation. Nano Letters, 2012, 12, 6012-6017.	9.1	49
186	Solarâ€Thermal Energy Conversion and Storage Using Photoresponsive Azobenzeneâ€Containing Polymers. Macromolecular Rapid Communications, 2020, 41, e1900413.	3.9	49
187	Imaging molecular defects in alkanethiol monolayers with an atomic force microscope. The Journal of Physical Chemistry, 1993, 97, 7316-7320.	2.9	48
188	Thin liquid films studied by atomic force microscopy. Current Opinion in Colloid and Interface Science, 2008, 13, 107-119.	7.4	48
189	3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces. Scientific Reports, 2016, 6, 23687.	3.3	48
190	Contact angles and wetting behaviour of single micron-sized particles. Journal of Physics Condensed Matter, 2005, 17, S445-S464.	1.8	47
191	Tuning the mechanical properties of silica microcapsules. Physical Chemistry Chemical Physics, 2010, 12, 15392.	2.8	47
192	Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matter, 2017, 13, 2749-2759.	2.7	47
193	Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning. ACS Nano, 2020, 14, 3836-3846.	14.6	47
194	From elasticity to capillarity in soft materials indentation. Physical Review Materials, 2017, 1 , .	2.4	47
195	Super liquid-repellent layers: The smaller the better. Advances in Colloid and Interface Science, 2015, 222, 104-109.	14.7	46
196	Detachment Force of Particles from Airâ-'Liquid Interfaces of Films and Bubbles. Langmuir, 2010, 26, 18135-18143.	3.5	45
197	Negative Thermal Expansion in Discotic Liquid Crystals of Nanographenes. Advanced Materials, 2010, 22, 1403-1406.	21.0	44
198	Controlling the Flow of Suspensions. Science, 2011, 331, 868-869.	12.6	44

#	Article	IF	Citations
199	Near-infrared photochemistry at interfaces based on upconverting nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 23585-23596.	2.8	43
200	Interaction of a Microsphere with a Solid-Supported Liquid Film. Langmuir, 2010, 26, 11797-11803.	3.5	42
201	Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances. Nanoscale, 2011, 3, 4788.	5.6	42
202	Defect-Controlled Hypersound Propagation in Hybrid Superlattices. Physical Review Letters, 2013, 111, 164301.	7.8	42
203	Friction between Individual Microcontacts. Journal of Colloid and Interface Science, 2001, 244, 432-435.	9.4	41
204	Stimuliâ€Responsive Yâ€Shaped Polymer Brushes Based on Junctionâ€Pointâ€Reactive Block Copolymers. Advanced Materials, 2012, 24, 5559-5563.	21.0	41
205	Effects of Spacers on Photoinduced Reversible Solidâ€toâ€Liquid Transitions of Azobenzeneâ€Containing Polymers. Chemistry - A European Journal, 2019, 25, 10946-10953.	3.3	41
206	Analysis of plastic deformation in atomic force microscopy: Application to ice. Journal of Chemical Physics, 2000, 113, 1194-1203.	3.0	40
207	Hydrodynamic drainage force in a highly confined geometry: role of surface roughness on different length scales. Microfluidics and Nanofluidics, 2010, 8, 653-663.	2.2	40
208	Bioinspired Orientation-Dependent Friction. Langmuir, 2014, 30, 11175-11182.	3.5	40
209	Shape of a sessile drop on a flat surface covered with a liquid film. Soft Matter, 2017, 13, 3760-3767.	2.7	40
210	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648.	13.8	40
211	A Photoresponsive Orthogonal Supramolecular Complex Based on Host–Guest Interactions. Chemistry - A European Journal, 2017, 23, 2628-2634.	3.3	39
212	Theory on Capillary Filling of Polymer Melts in Nanopores. Macromolecular Rapid Communications, 2018, 39, e1800087.	3.9	39
213	Imaging Homogeneous and Composite Latex Particles with an Atomic Force Microscope. Langmuir, 1995, 11, 4735-4741.	3.5	38
214	Rough Surfaces by Design: Gold Colloids Tethered to Gold Surfaces as Substrates for CaCO3 Crystallization. Advanced Materials, 1998, 10, 401-404.	21.0	38
215	Two-Dimensional Structure of Self-Assembled Alkyl-Substituted Polyphenylene Dendrimers on Graphite. Langmuir, 2002, 18, 2398-2405.	3. 5	38
216	Probing Diffusion of Single Nanoparticles at Water–Oil Interfaces. Small, 2011, 7, 3502-3507.	10.0	38

#	Article	IF	Citations
217	Solventâ€Free Synthesis of Microparticles on Superamphiphobic Surfaces. Angewandte Chemie - International Edition, 2013, 52, 11286-11289.	13.8	38
218	Diffusion and Conformation of Peptide-Functionalized Polyphenylene Dendrimers Studied by Fluorescence Correlation and 13C NMR Spectroscopy. Biomacromolecules, 2007, 8, 1745-1750.	5. 4	37
219	Tracer Diffusion in Silica Inverse Opals. Langmuir, 2010, 26, 10141-10146.	3.5	37
220	Mechanical Properties of Highly Porous Super Liquidâ€Repellent Surfaces. Advanced Functional Materials, 2016, 26, 4914-4922.	14.9	37
221	Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. Journal of Chemical Physics, 2017, 146, 203320.	3.0	37
222	Ru–Se Coordination: A New Dynamic Bond for Visible-Light-Responsive Materials. Journal of the American Chemical Society, 2021, 143, 12736-12744.	13.7	36
223	Charge transport of ion pumps on lipid bilayer membranes. Quarterly Reviews of Biophysics, 1993, 26, 1-25.	5.7	35
224	Rupture Force between the Third Strand and the Double Strand within a Triplex DNA. Journal of the American Chemical Society, 2004, 126, 13992-13997.	13.7	35
225	Adhesion of Particles with Sharp Edges to Air–Liquid Interfaces. Langmuir, 2012, 28, 11042-11047.	3.5	35
226	Kelvin Probe Force Microscopy in Nonpolar Liquids. Langmuir, 2012, 28, 13892-13899.	3.5	35
227	Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated plate. Nature Communications, 2017, 8, 905.	12.8	35
228	Biological fabrication of cellulose fibers with tailored properties. Science, 2017, 357, 1118-1122.	12.6	35
229	Formation of nanorods by self-assembly of alkyl-substituted polyphenylene dendrimers on graphite. Chemical Communications, 2000, , 1169-1170.	4.1	34
230	Self-Assembly of Alkyl-Substituted Polyphenylene Dendrimers on Graphite. Macromolecules, 2001, 34, 3661-3671.	4.8	34
231	Small Structures, Big Droplets: The Role of Nanoscience in Fog Harvesting. ACS Nano, 2016, 10, 10627-10630.	14.6	34
232	Wetting of soft superhydrophobic micropillar arrays. Soft Matter, 2018, 14, 7429-7434.	2.7	34
233	Flowâ€Induced Longâ€Term Stable Slippery Surfaces. Advanced Science, 2019, 6, 1900019.	11.2	34
234	Crystallization and Dynamics of Water Confined in Model Mesoporous Silica Particles: Two Ice Nuclei and Two Fractions of Water. Langmuir, 2019, 35, 5890-5901.	3.5	34

#	Article	IF	CITATIONS
235	Electrostatic forces acting on tip and cantilever in atomic force microscopy. Physical Review B, 2006, 74, .	3.2	33
236	Photoinduced Degradation Studies of Organic Solar Cell Materials Using Kelvin Probe Force and Conductive Scanning Force Microscopy. Journal of Physical Chemistry C, 2011, 115, 19994-20001.	3.1	33
237	Adhesion forces between individual gold and polystyrene particles. Journal of Adhesion Science and Technology, 2002, 16, 829-843.	2.6	32
238	Dynamic Homogeneity by Architectural Design – Bottlebrush Polymers. Macromolecular Chemistry and Physics, 2012, 213, 1311-1320.	2.2	32
239	Nanopatterns of polymer brushes for understanding protein adsorption on the nanoscale. RSC Advances, 2014, 4, 45059-45064.	3.6	32
240	Influence of surfactants in forced dynamic dewetting. Soft Matter, 2016, 12, 7782-7791.	2.7	32
241	Controlling the Structure of Supraballs by pH-Responsive Particle Assembly. Langmuir, 2017, 33, 1995-2002.	3.5	32
242	Water Induced Dewetting of Ultrathin Polystyrene Films on Hydrophilic Surfaces. Langmuir, 2002, 18, 8056-8061.	3.5	31
243	Sessile-drop-induced bending of atomic force microscope cantilevers: a model system for monitoring microdrop evaporation. Journal of Micromechanics and Microengineering, 2006, 16, 2273-2280.	2.6	31
244	Near Field Guided Chemical Nanopatterning. Langmuir, 2012, 28, 3699-3703.	3.5	31
245	Dynamics in Stimuli-Responsive Poly(<i>N</i> -isopropylacrylamide) Hydrogel Layers As Revealed by Fluorescence Correlation Spectroscopy. Macromolecules, 2014, 47, 5303-5312.	4.8	31
246	Multiband Hypersound Filtering in Two-Dimensional Colloidal Crystals: Adhesion, Resonances, and Periodicity. Nano Letters, 2020, 20, 1883-1889.	9.1	31
247	Fuerzas de repulsi \tilde{A}^3 n de aditivos superplastificantes en sistemas de escoria granulada de horno alto en medios alcalinos, desde medidas de AFM a propiedades reol \tilde{A}^3 gicas. Materiales De Construccion, 2012, 62, 489-513.	0.7	31
248	Quantitative Measurement of Friction between Single Microspheres by Friction Force Microscopy. Langmuir, 2007, 23, 8392-8399.	3.5	30
249	Effect of Chain Topology on the Self-Organization and Dynamics of Block Copolypeptides: From Diblock Copolymers to Stars. Biomacromolecules, 2008, 9, 1959-1966.	5.4	30
250	A study of photothermal laser ablation of various polymers on microsecond time scales. SpringerPlus, 2014, 3, 489.	1.2	30
251	lon Size Approaching the Bjerrum Length in Solvents of Low Polarity by Dendritic Encapsulation. Macromolecules, 2014, 47, 191-196.	4.8	30
252	Effect of water and nano-silica solution on the early stages cement hydration. Construction and Building Materials, 2016, 129, 11-24.	7.2	30

#	Article	IF	CITATIONS
253	Effect of particle morphology on mechanical properties of liquid marbles. Advanced Powder Technology, 2019, 30, 330-335.	4.1	30
254	Long Alkyl Side Chains Simultaneously Improve Mechanical Robustness and Healing Ability of a Photoswitchable Polymer. Macromolecules, 2020, 53, 8562-8569.	4.8	30
255	Chloroplast F0F1ATP Synthase Imaged by Atomic Force Microscopy. Journal of Structural Biology, 1997, 119, 139-148.	2.8	29
256	Adhesion between Solid Surfaces in Polymer Melts:Â Bridging of Single Chains. Macromolecules, 2004, 37, 6086-6089.	4.8	29
257	Light Induced Charging of Polymer Functionalized Nanorods. Nano Letters, 2010, 10, 2812-2816.	9.1	29
258	Hydrodynamic Force between a Sphere and a Soft, Elastic Surface. Langmuir, 2014, 30, 11619-11624.	3.5	29
259	An autonomic self-healing organogel with a photo-mediated modulus. Chemical Communications, 2016, 52, 14157-14160.	4.1	29
260	Control of Droplet Evaporation on Oil-Coated Surfaces for the Synthesis of Asymmetric Supraparticles. Langmuir, 2019, 35, 14042-14048.	3.5	29
261	From Native to Nonâ€Native Twoâ€Dimensional Protein Lattices through Underlying Hydrophilic/Hydrophobic Nanoprotrusions. Angewandte Chemie - International Edition, 2008, 47, 4707-4710.	13.8	28
262	Studying mechanical microcontacts of fine particles with the quartz crystal microbalance. Powder Technology, 2010, 203, 489-502.	4.2	28
263	Effect of the Molecular Structure on the Hierarchical Self-Assembly of Semifluorinated Alkanes at the Air/Water Interface. Langmuir, 2011, 27, 8776-8786.	3.5	28
264	Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24876-24886.	8.0	28
265	Effects of polydispersity, additives, impurities and surfaces on the crystallization of poly(ethylene) Tj ETQq $1\ 1\ 0.7$	84314 rgt 3.8	BT /Overlock
266	Adhesion forces in interactive mixtures for dry powder inhalers – Evaluation of a new measuring method. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 579-586.	4.3	27
267	A Straightforward Way To Form Close-Packed TiO ₂ Particle Monolayers at an Air/Water Interface. Langmuir, 2011, 27, 887-894.	3.5	27
268	Superamphiphobic Particles: How Small Can We Go?. Physical Review Letters, 2014, 112, 016101.	7.8	27
269	Dynamics of Ice/Water Confined in Nanoporous Alumina. Journal of Physical Chemistry B, 2015, 119, 14814-14820.	2.6	27
270	Orthogonal photo-switching of supramolecular patterned surfaces. Chemical Communications, 2018, 54, 3403-3406.	4.1	27

#	Article	IF	Citations
271	Detaching Microparticles from a Liquid Surface. Physical Review Letters, 2018, 121, 048002.	7.8	27
272	The role of surface forces in mineral flotation. Current Opinion in Colloid and Interface Science, 2019, 44, 143-152.	7.4	27
273	Reconfigurable Surfaces Based on Photocontrolled Dynamic Bonds. Advanced Functional Materials, 2020, 30, 1907605.	14.9	27
274	Anisotropic carrier diffusion in single MAPbI3 grains correlates to their twin domains. Energy and Environmental Science, 2020, 13, 4168-4177.	30.8	27
275	Fabrication of Stretchable Superamphiphobic Surfaces with Deformationâ€Induced Rearrangeable Structures. Advanced Materials, 2022, 34, e2107901.	21.0	27
276	Imaging purple membranes dry and in water with the atomic force microscope. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 1193.	1.6	26
277	Diffusion of water into SU-8 microcantilevers. Physical Chemistry Chemical Physics, 2010, 12, 10577.	2.8	26
278	Hydrodynamic boundary condition of water on hydrophobic surfaces. Physical Review E, 2013, 87, 051001.	2.1	26
279	Elucidating the Impact of Molecular Packing and Device Architecture on the Performance of Nanostructured Perylene Diimide Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 8687-8698.	8.0	26
280	Functional superhydrophobic surfaces made of Janus micropillars. Soft Matter, 2015, 11, 506-515.	2.7	26
281	Effect of Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina. Macromolecules, 2016, 49, 5945-5954.	4.8	26
282	Control of surface properties of self-assembled monolayers by tuning the degree of molecular asymmetry. Surface Science, 2006, 600, 2847-2856.	1.9	25
283	Evaporation Structures of Solvent Drops Evaporating from Polymer Surfaces: Influence of Molar Mass. Macromolecular Chemistry and Physics, 2007, 208, 2134-2144.	2.2	25
284	Direct studies of liquid flows near solid surfaces by total internal reflection fluorescence cross-correlation spectroscopy. Optics Express, 2009, 17, 21149.	3.4	25
285	Interfacial Interactions During <i>InÂSitu</i> Polymer Imbibition in Nanopores. Physical Review Letters, 2020, 125, 127802.	7.8	25
286	Electrospun nanocomposite fibers from lignin and iron oxide as supercapacitor material. Journal of Materials Research and Technology, 2021, 12, 2153-2167.	5.8	25
287	Temperature jump study of charge translocation during the bacteriorhodopsin photocycle. Biophysical Journal, 1989, 56, 851-859.	0.5	24
288	Influence of Surfactant Concentration and Background Salt on Forced Dynamic Wetting and Dewetting. Langmuir, 2011, 27, 2112-2117.	3.5	24

#	Article	IF	Citations
289	Premelting-Induced Agglomeration of Hydrates: Theoretical Analysis and Modeling. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14599-14606.	8.0	24
290	Immobilizing Biomolecules for Scanning Force Microscopy by Embedding in Carbon. Journal of Structural Biology, 1993, 110, 127-132.	2.8	23
291	Measuring electrostatic double-layer forces on HOPG at high surface potentials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 145-150.	4.7	23
292	Effects of Chain Topology on the Tracer Diffusion in Star Polyisoprenes. Macromolecules, 2009, 42, 9183-9189.	4.8	23
293	Influence of the spring constant of cantilevers on hydrodynamic force measurements by the colloidal probe technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 72-80.	4.7	23
294	Interfacial Forces between a Silica Particle and Phosphatidylcholine Monolayers at the Airâ^'Water Interface. Langmuir, 2010, 26, 14574-14581.	3.5	23
295	Electric-field-induced condensation: An extension of the Kelvin equation. Physical Review E, 2011, 83, 061604.	2.1	23
296	Fast dynamic wetting of polymer surfaces by miscible and immiscible liquids. Colloid and Polymer Science, 2011, 289, 1609-1615.	2.1	23
297	Optimization of superamphiphobic layers based on candle soot. Pure and Applied Chemistry, 2014, 86, 87-96.	1.9	23
298	Molecular Exchange Kinetics of Diblock Copolymer Micelles Monitored by Fluorescence Correlation Spectroscopy. ACS Macro Letters, 2014, 3, 428-432.	4.8	23
299	The atomic force microscope as a tool to study and manipulate local surface properties. Biosensors and Bioelectronics, 1996 , 11 , $601-612$.	10.1	22
300	Equilibrium Interaction of Solid Surfaces across a Polymer Melt. Langmuir, 2004, 20, 8030-8034.	3.5	22
301	Microstructures by Solvent Drop Evaporation on Polymer Surfaces:Â Dependence on Molar Mass. Langmuir, 2006, 22, 11395-11399.	3.5	22
302	Interphase of a Polymer at a Solid Interface. Macromolecules, 2014, 47, 8459-8465.	4.8	22
303	Kinetics of Ice Nucleation Confined in Nanoporous Alumina. Journal of Physical Chemistry B, 2015, 119, 11960-11966.	2.6	22
304	Adsorption and Crystallization of Particles at the Air–Water Interface Induced by Minute Amounts of Surfactant. Langmuir, 2018, 34, 15526-15536.	3.5	22
305	Brownian Diffusion of Individual Janus Nanoparticles at Water/Oil Interfaces. ACS Nano, 2020, 14, 10095-10103.	14.6	22
306	How Universal Is the Wetting Aging in 2D Materials. Nano Letters, 2020, 20, 5670-5677.	9.1	22

#	Article	IF	CITATIONS
307	Effects of Nanoscale Confinement and Pressure on the Dynamics of pODMA- <i>b</i> p-ci>tBA- <i>b</i> -pODMA Triblock Copolymers. Macromolecules, 2010, 43, 2453-2462.	4.8	21
308	Influence of humidity on the nanoadhesion between a hydrophobic and a hydrophilic surface. Chemical Physics Letters, 2011, 503, 66-70.	2.6	21
309	Electrokinetics on superhydrophobic surfaces. Journal of Physics Condensed Matter, 2012, 24, 464110.	1.8	21
310	Conformational Transitions of Poly(<scp> </scp> -proline) in Copolypeptides with Poly(γ-benzyl- <scp> </scp> -glutamate) Induced by Packing. Macromolecules, 2012, 45, 9326-9332.	4.8	21
311	Measurement of rotation of individual spherical particles in cohesive granulates. Granular Matter, 2013, 15, 391-400.	2.2	21
312	Capillary Imbibition of Polymer Mixtures in Nanopores. Macromolecules, 2018, 51, 3059-3065.	4.8	21
313	Shapeâ€Designable Polyhedral Liquid Marbles/Plasticines Stabilized with Polymer Plates. Advanced Materials Interfaces, 2020, 7, 2001573.	3.7	21
314	Surface and Capillary Forces Encountered by Zinc Sulfide Microspheres in Aqueous Electrolyte. Langmuir, 2005, 21, 5882-5886.	3.5	20
315	Quantitative Characterization of Nanoadhesion by Dynamic Force Spectroscopy. Langmuir, 2009, 25, 256-261.	3.5	20
316	Monitoring the Dynamics of Phase Separation in a Polymer Blend by Confocal Imaging and Fluorescence Correlation Spectroscopy. Macromolecular Rapid Communications, 2012, 33, 1568-1573.	3.9	20
317	Measuring Adhesion Forces in Powder Collectives by Inertial Detachment. Langmuir, 2013, 29, 16075-16083.	3.5	20
318	Candle soot-based super-amphiphobic coatings resist protein adsorption. Biointerphases, 2016, 11, 031007.	1.6	20
319	Forces between a stiff and a soft surface. Current Opinion in Colloid and Interface Science, 2017, 27, 82-90.	7.4	20
320	Super liquid repellent surfaces for anti-foaming and froth management. Nature Communications, 2021, 12, 5358.	12.8	20
321	Modified atomic force microscope for high-rate dynamic force spectroscopy. Applied Physics Letters, 2006, 88, 263109.	3.3	19
322	Effect of Dipole Functionalization on the Thermodynamics and Dynamics of Discotic Liquid Crystals. Journal of Physical Chemistry B, 2011, 115, 5807-5814.	2.6	19
323	Dissociation and Charge Transport in Salts of Dendronized Ions in Solvents of Low Polarity. Journal of Physical Chemistry B, 2011, 115, 5801-5806.	2.6	19
324	Plasmon-Enhanced Dynamic Depolarized Light Scattering. Journal of Physical Chemistry C, 2013, 117, 8411-8419.	3.1	19

#	Article	IF	Citations
325	Surface Premelting and Interfacial Interactions of Semi-Clathrate Hydrate. Journal of Physical Chemistry C, 2019, 123, 24080-24086.	3.1	19
326	Adhesion of carbonyl iron powder particles studied by atomic force microscopy. Journal of Adhesion Science and Technology, 2005, 19, 199-213.	2.6	18
327	Surface forces in a confined polymer melt: Self-consistent field analysis of full and restricted equilibrium cases. Physical Review E, 2005, 72, 021807.	2.1	18
328	Effect of Humidity on Nanoscale Adhesion on Self-Assembled Thiol Monolayers Studied by Dynamic Force Spectroscopy. Langmuir, 2010, 26, 1837-1847.	3.5	18
329	Forces between a monolayer at an air/water interface and a particle in solution: influence of the sign of the surface charges and the subphase salt concentration. Soft Matter, 2011, 7, 10182.	2.7	18
330	Glycidyl 4â€Functionalizedâ€1,2,3â€Triazole Polymers. Macromolecular Chemistry and Physics, 2013, 214, 56-61.	2.2	18
331	Long-Term Repellency of Liquids by Superoleophobic Surfaces. Physical Review Letters, 2016, 117, 046102.	7.8	18
332	Adsorption Kinetics of <i>cis</i> -1,4-Polyisoprene in Nanopores by <i>In Situ</i> Nanodielectric Spectroscopy. Macromolecules, 2021, 54, 6267-6274.	4.8	18
333	Clathrate Adhesion Induced by Quasi-Liquid Layer. Journal of Physical Chemistry C, 2021, 125, 21293-21300.	3.1	18
334	Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids. Nanoscale, 2011, 3, 251-257.	5.6	17
335	Scanning force microscopy as a tool to investigate the properties of polyglycerol ester foams. Journal of Colloid and Interface Science, 2012, 374, 164-175.	9.4	17
336	Phoxonic Hybrid Superlattice. ACS Applied Materials & Interfaces, 2015, 7, 12488-12495.	8.0	17
337	Core@shell Poly(<i>n</i> -butylacrylate)@polystyrene Nanoparticles: Baroplastic Force-Responsiveness in Presence of Strong Phase Separation. Macromolecular Rapid Communications, 2016, 37, 584-589.	3.9	17
338	Temperature-Controlled Diffusion in PNIPAM-Modified Silica Inverse Opals. ACS Macro Letters, 2016, 5, 190-194.	4.8	17
339	Vapor Lubrication for Reducing Water and Ice Adhesion on Poly(dimethylsiloxane) Brushes. Advanced Materials, 2022, 34, .	21.0	17
340	Imaging flagella of halobacteria by atomic force microscopy. Analyst, The, 1994, 119, 1943.	3.5	16
341	Microarrays by structured substrate swelling. European Polymer Journal, 2004, 40, 975-980.	5.4	16
342	Morphosynthesis of Strontianite Nanowires Using Polyacrylate Templates Tethered onto Self-Assembled Monolayersâ€. Langmuir, 2005, 21, 3981-3986.	3.5	16

#	Article	IF	Citations
343	Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy. Polymer, 2006, 47, 7259-7270.	3.8	16
344	Quantitative Analysis of the Interaction between an Atomic Force Microscopy Tip and a Hydrophobic Monolayer. Journal of Physical Chemistry C, 2010, 114, 21572-21578.	3.1	16
345	To tilt or not to tilt? Kinetics of structure formation in a discotic liquid crystal. Soft Matter, 2011, 7, 4680.	2.7	16
346	Capillary forces between rigid spheres and elastic supports: the role of Young's modulus and equilibrium vapor adsorption. Soft Matter, 2013, 9, 4534.	2.7	16
347	Homogeneous Nucleation of Ice Confined in Hollow Silica Spheres. Journal of Physical Chemistry B, 2017, 121, 306-313.	2.6	16
348	Capillary Imbibition, Crystallization, and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina. Macromolecules, 2017, 50, 8755-8764.	4.8	16
349	<i>In Situ</i> Monitoring of the Imbibition of Poly(<i>n</i> -butyl methacrylates) in Nanoporous Alumina by Dielectric Spectroscopy. Macromolecules, 2019, 52, 8167-8176.	4.8	16
350	How a water drop removes a particle from a hydrophobic surface. Soft Matter, 2021, 17, 1746-1755.	2.7	16
351	Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromolecular Rapid Communications, 2022, 43, e2100892.	3.9	16
352	A Study of the Linear Tension Effect on the Polystyrene Microsphere Wettability with Water. Colloid Journal, 2001, 63, 518-525.	1.3	15
353	Thermodynamics and rheology of cycloolefin copolymers. Journal of Chemical Physics, 2006, 124, 134903.	3.0	15
354	Adsorption, Aggregation, and Desorption of Proteins on Smectite Particles. Langmuir, 2014, 30, 11650-11659.	3.5	15
355	Shaping drops. Nature Physics, 2014, 10, 475-476.	16.7	15
356	Siliceous spicules enhance fracture-resistance and stiffness of pre-colonial Amazonian ceramics. Scientific Reports, 2015, 5, 13303.	3.3	15
357	Molecular Probe Diffusion in Thin Polymer Films: Evidence for a Layer with Enhanced Mobility Far above the Glass Temperature. ACS Macro Letters, 2018, 7, 425-430.	4.8	15
358	Controlling supraparticle shape and structure by tuning colloidal interactions. Journal of Colloid and Interface Science, 2022, 607, 1661-1670.	9.4	15
359	Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream. Biomacromolecules, 2022, 23, 1065-1074.	5.4	15
360	Investigation of latex particle morphology and surface structure of the corresponding coatings by atomic force microscopy. Progress in Organic Coatings, 1997, 32, 75-80.	3.9	14

#	Article	IF	CITATIONS
361	Cibacron Blue F3G-A anchored monolayers with biospecific affinity for NAD(H)-dependent lactate dehydrogenase: characterization by FTIR-spectroscopy and atomic force microscopy. Biosensors and Bioelectronics, 1997, 12, 839-852.	10.1	14
362	Atomic Force Microscopy Deposition of Poly-l-lysine Structures onto Lipid Bilayers Supported by Mica. Langmuir, 2000, 16, 9568-9570.	3.5	14
363	Atomic force microscopy in structured liquids: remark on the interpretation of jumps in force curves. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 252, 165-168.	4.7	14
364	Direct 3D Visualization of the Phaseâ€Separated Morphology in Chlorinated Polyethylene/Nylon Terpolyamide Based Thermoplastic Elastomers. Macromolecular Rapid Communications, 2012, 33, 114-119.	3.9	14
365	Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy. Physical Review E, 2013, 87, 012403.	2.1	14
366	Highâ€Performance TiO ₂ Nanoparticle/DOPAâ€Polymer Composites. Macromolecular Rapid Communications, 2015, 36, 1129-1137.	3.9	14
367	Effects of pH on the structure and mechanical properties of dried pH-responsive latex particles. Soft Matter, 2017, 13, 7562-7570.	2.7	14
368	Preparation of Monodisperse Giant Unilamellar Anchored Vesicles Using Micropatterned Hydrogel Substrates. ACS Omega, 2019, 4, 9393-9399.	3.5	14
369	Confined polymer melts studied by atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 203-209.	4.7	13
370	Towards Powering Nanometer-Scale Devices with Molecular Motors: Single Molecule Engines. Macromolecular Chemistry and Physics, 2006, 207, 573-575.	2.2	13
371	Near-Field-Mediated Enhancement of Two-Photon-Induced Fluorescence on Plasmonic Nanostructures. Journal of Physical Chemistry C, 2010, 114, 20968-20973.	3.1	13
372	Water diffusion in polymer nano-films measured with microcantilevers. Sensors and Actuators B: Chemical, 2011, 160, 32-38.	7.8	13
373	Nanowear in a nanocomposite reinforced polymer. Wear, 2011, 271, 2852-2856.	3.1	13
374	Effect of Morphological Changes on Presence of Trap States in P3HT:PCBM Solar Cells Studied by Cross-Sectional Energy Filtered TEM and Thermally Stimulated Current Measurements. Journal of Physical Chemistry C, 2013, 117, 23495-23499.	3.1	13
375	Drop impact on surfactant films and solutions. Colloid and Polymer Science, 2013, 291, 1963-1976.	2.1	13
376	Floating on Oil. Langmuir, 2014, 30, 10637-10642.	3.5	13
377	The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory. Journal of Chemical Physics, 2016, 145, 134703.	3.0	13
378	Responsive lonogel Surface with Renewable Antibiofouling Properties. Macromolecular Rapid Communications, 2019, 40, e1900395.	3.9	13

#	Article	IF	CITATIONS
379	Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface. ACS Nano, 2019, 13, 2246-2252.	14.6	13
380	Facile Synthesis of Spherical Polyelectrolyte Brushes as Carriers for Conducting Polymers to be Used in Plastic Electronics. Macromolecular Chemistry and Physics, 2009, 210, 1504-1509.	2.2	12
381	Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: Quantitative data analysis. Physical Review E, 2011, 84, 066306.	2.1	12
382	Frequency Response of Polymer Films Made from a Precursor Colloidal Monolayer on a Nanomechanical Cantilever. Macromolecules, 2012, 45, 862-871.	4.8	12
383	Versatile light actuated matter manipulation in transparent non-dilute polymer solutions. Soft Matter, 2012, 8, 2382.	2.7	12
384	Exfoliation of montmorillonite in protein solutions. Journal of Colloid and Interface Science, 2012, 374, 135-140.	9.4	12
385	Fluorescence Correlation Spectroscopy in Dilute Polymer Solutions: Effects of Molar Mass Dispersity and the Type of Fluorescent Labeling. ACS Macro Letters, 2015, 4, 171-176.	4.8	12
386	Cylindrical chains of water drops condensing on microstructured lubricant-infused surfaces. Soft Matter, 2016, 12, 9377-9382.	2.7	12
387	Surfactants Mediate the Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. ACS Applied Materials & Deverage (2019, 11, 27288-27296.	8.0	12
388	Surface charges as a versatile platform for emerging applications. Science Bulletin, 2020, 65, 1052-1054.	9.0	12
389	Adaptation of a Styrene–Acrylic Acid Copolymer Surface to Water. Langmuir, 2021, 37, 1571-1577.	3.5	12
390	Stable Lignin-Rich Nanofibers for Binder-Free Carbon Electrodes in Supercapacitors. ACS Applied Nano Materials, 2021, 4, 13099-13111.	5.0	12
391	Charging of drops impacting onto superhydrophobic surfaces. Soft Matter, 2022, 18, 1628-1635.	2.7	12
392	Morphology of heterogeneous latex particles investigated by atomic force microscopy., 1996,, 91-95.		11
393	Time-resolved, local temperature measurements during pulsed laser heating. New Journal of Physics, 2010, 12, 083011.	2.9	11
394	Surface and friction forces between grafted polysaccharide layers in the absence and presence of surfactant. Journal of Colloid and Interface Science, 2011, 364, 351-358.	9.4	11
395	Translational and rotational diffusion of gold nanorods near a wall. Journal of Chemical Physics, 2013, 139, 064710.	3.0	11
396	New insights into the multilevel structure and phase transitions of synthetic organoclays. Soft Matter, 2013, 9, 2291.	2.7	11

#	Article	IF	CITATIONS
397	Nanoscale Thermomechanics of Wear-Resilient Polymeric Bilayer Systems. ACS Nano, 2013, 7, 748-759.	14.6	11
398	Hierarchical Selfâ€Assembly of PDMAâ€∢i>bà6€PS Chains into Granular Nanoparticles: Genesis and Fate. Macromolecular Rapid Communications, 2014, 35, 1994-1999.	3.9	11
399	Stability of a Split Streptomycin Binding Aptamer. Journal of Physical Chemistry B, 2016, 120, 6479-6489.	2.6	11
400	Water Mobility in the Interfacial Liquid Layer of Ice/Clay Nanocomposites. Angewandte Chemie - International Edition, 2021, 60, 7697-7702.	13.8	11
401	Designing the shape of supraparticles by controlling the apparent contact angle and contact line friction of droplets. Journal of Colloid and Interface Science, 2021, 588, 157-163.	9.4	11
402	"Liquid-like―Water in Clathrates Induced by Host–Guest Hydrogen Bonding. Journal of Physical Chemistry C, 2021, 125, 15751-15757.	3.1	11
403	Ionic Conductivity of a Solid Polymer Electrolyte Confined in Nanopores. Macromolecules, 2022, 55, 1332-1341.	4.8	11
404	Artifacts in Force Measurements with the Atomic Force Microscope Due to Digitalization. Langmuir, 1995, 11, 1065-1067.	3.5	10
405	Pressure distribution in a mechanical microcontact. Applied Physics Letters, 2006, 88, 234101.	3.3	10
406	Interaction of Solid Surfaces Across Binary Mixtures of Polymer Melts. Macromolecules, 2007, 40, 4088-4091.	4.8	10
407	Interaction of Cationic Hydrophobic Surfactants at Negatively Charged Surfaces Investigated by Atomic Force Microscopy. Langmuir, 2009, 25, 11509-11515.	3.5	10
408	Electrical field assisted growth of poly(3-hexylthiophene) layers employing ionic liquids: microstructure elucidated by scanning force and electron microscopy. Journal of Materials Chemistry, 2010, 20, 5325.	6.7	10
409	Redox active polymers with phenothiazine moieties for nanoscale patterning via conductive scanning force microscopy. Nanoscale, 2011, 3, 5049.	5.6	10
410	Influence of surfactant transport suppression on dynamic contact angle hysteresis. Colloid and Polymer Science, 2013, 291, 361-366.	2.1	10
411	Molecular Tracer Diffusion in Nondilute Polymer Solutions: Universal Master Curve and Glass Transition Effects. Macromolecules, 2015, 48, 8907-8912.	4.8	10
412	Brillouin light scattering under one-dimensional confinement: Symmetry and interference self-canceling. Physical Review B, 2019, 99, .	3.2	10
413	Irregular, nanostructured superhydrophobic surfaces: Local wetting and slippage monitored by fluorescence correlation spectroscopy. Physical Review Fluids, 2021, 6, .	2.5	10
414	Optical Manipulation of Liquids by Thermal Marangoni Flow along the Air–Water Interfaces of a Superhydrophobic Surface. Langmuir, 2021, 37, 8677-8686.	3 . 5	10

#	Article	IF	CITATIONS
415	Fluorescence correlation spectroscopy to unravel the interactions between macromolecules in wine. Food Chemistry, 2021, 352, 129343.	8.2	10
416	Light-induced assembly of colloidal nanoparticles based on photo-controlled metal–ligand coordination. , 2022, 1, 100004.		10
417	Enhanced Condensation on Soft Materials through Bulk Lubricant Infusion. Advanced Functional Materials, 2022, 32, .	14.9	10
418	Tuning the Charge of Sliding Water Drops. Langmuir, 2022, 38, 6224-6230.	3.5	10
419	Electron identification up to 100 GeV by means of transition radiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 252, 483-487.	1.6	9
420	Interaction between Solid Surfaces in a Melt of End-Functionalized Polymers. Macromolecules, 2007, 40, 2520-2523.	4.8	9
421	Forces between Thiolate-Modified Gold Surfaces in a Melt of End-Functionalized Polymers. Journal of Physical Chemistry B, 2008, 112, 2001-2007.	2.6	9
422	Anisotropic hindered motion close to an interface studied by resonance-enhanced dynamic light scattering. New Journal of Physics, 2010, 12, 103022.	2.9	9
423	Dynamic Wetting of Polyisoprene Melts: Influence of the End Group. Langmuir, 2010, 26, 2544-2549.	3.5	9
424	Dynamics of Structure Formation in a Discotic Liquid Crystal by Infrared Spectroscopy and Related Techniques. Journal of Physical Chemistry B, 2011, 115, 14919-14927.	2.6	9
425	Influence of Relative Humidity on the Nanoscopic Topography and Dielectric Constant of Thin Films of PPy:PSS. Small, 2011, 7, 950-956.	10.0	9
426	Dynamic Heterogeneity and Phase Separation Kinetics in Miscible Poly(vinyl acetate)/Poly(ethylene) Tj ETQq0 0 C	rgBT /Ove	erlgck 10 Tf 5
427	Poly(ethylene glycol)-Functionalized Hexaphenylbenzenes as Unique Amphiphiles: Supramolecular Organization and Ion Conductivity. Macromolecules, 2014, 47, 5691-5702.	4.8	9
428	Fluorescence Correlation Spectroscopy Monitors the Hydrophobic Collapse of pH-Responsive Hairy Nanoparticles at the Individual Particle Level. Macromolecules, 2015, 48, 7237-7244.	4.8	9
429	A Photocatalytically Active Lubricantâ€Impregnated Surface. Angewandte Chemie, 2017, 129, 5047-5051.	2.0	9
430	Forced dewetting dynamics of high molecular weight surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 30-37.	4.7	9
431	Nanostructured polymer assemblies stabilize photoactivatable anticancer ruthenium complexes under physiological conditions. Journal of Inorganic Biochemistry, 2020, 207, 111052.	3.5	9
432	Capillary Torque on a Particle Rotating at an Interface. Langmuir, 2021, 37, 7457-7463.	3.5	9

#	Article	IF	CITATIONS
433	Wetting over pre-existing liquid films. Physical Review Fluids, 2018, 3, .	2.5	9
434	Redâ€Lightâ€Responsive Metallopolymer Nanocarriers with Conjugated and Encapsulated Drugs for Phototherapy Against Multidrugâ€Resistant Tumors. Small, 2022, 18, .	10.0	9
435	Monolayers of asymmetrical diethylalkanoat disulfides on gold(111):.the influence of chain length difference on atomic force microscope images. Applied Physics A: Materials Science and Processing, 1998, 66, S1261-S1266.	2.3	8
436	Interaction between a silica particle and the underside of a polymer monolayer at the air/water interface in the presence of an anionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 383, 32-40.	4.7	8
437	Effect of the Degree of Dissociation of Molecules in a Monolayer at an Air/Water Interface on the Force Between the Monolayer and a Like-Charged Particle in the Subphase. Journal of Physical Chemistry B, 2012, 116, 13731-13738.	2.6	8
438	Surface-mediated buckling of core–shell spheres for the formation of oriented anisotropic particles with tunable morphologies. Soft Matter, 2013, 9, 2589.	2.7	8
439	Switchable dielectric permittivity with temperature and Dc-bias in a semifluorinated azobenzene derivative. Colloid and Polymer Science, 2014, 292, 1939-1948.	2.1	8
440	Influence of Temperature on the Nanoadhesion of a Methyl-Terminated Thiol Monolayer: A New Insight with High-Rate Dynamic Force Spectroscopy. Langmuir, 2016, 32, 4500-4508.	3.5	8
441	Modulation of Mitochondriotropic Properties of Cyanine Dyes by in Organello Copperâ€Free Click Reaction. ChemBioChem, 2017, 18, 1814-1818.	2.6	8
442	Redoxâ€Responsive and Thermoresponsive Supramolecular Nanosheet Gels with High Young's Moduli. Macromolecular Rapid Communications, 2018, 39, e1800282.	3.9	8
443	Bubbles nucleating on superhydrophobic micropillar arrays under flow. Soft Matter, 2019, 15, 8175-8183.	2.7	8
444	Liquidâ€Repellent Metal Oxide Photocatalysts. Chemistry - A European Journal, 2019, 25, 4535-4542.	3.3	8
445	Onset of Elasto-capillary Bundling of Micropillar Arrays: A Direct Visualization. Langmuir, 2020, 36, 11581-11588.	3.5	8
446	Heterogeneous polymer-containing films: a comparison of macroscopic properties with microscopic properties determined by atomic force microscopy. Physical Chemistry Chemical Physics, 1999, 1, 4881-4887.	2.8	7
447	Slow kinetics of phase transformation in a dipole-functionalized discotic liquid crystal. Journal of Chemical Physics, 2009, 131, 114704.	3.0	7
448	Exciton diffusion controlled quantum efficiency in hybrid dye sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 1604.	2.8	7
449	On the Adhesion between Individual Particles. KONA Powder and Particle Journal, 2011, 29, 53-66.	1.7	7
450	Dynamics and Kinetics of Structure Formation in Molecularly Tethered Fluorocarbon/Hydrocarbon Amphiphiles. Journal of Physical Chemistry B, 2012, 116, 13812-13820.	2.6	7

#	Article	IF	Citations
451	Temperature analysis of laser heated polymers on microsecond time scales. Applied Physics A: Materials Science and Processing, 2012, 106, 791-801.	2.3	7
452	Transparent and airtight silica nano- and microchannels with uniform tubular cross-section. Soft Matter, 2013, 9, 9824.	2.7	7
453	Electrochemically Durable Thiophene Alkanethiol Self-Assembled Monolayers. Langmuir, 2014, 30, 1536-1543.	3 . 5	7
454	The forces and physical properties of polymer particulate monolayers at air/aqueous interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 322-332.	4.7	7
455	Ultrastrong composites from dopamine modified-polymer-infiltrated colloidal crystals. Materials Horizons, 2015, 2, 434-441.	12.2	7
456	Solvothermal synthesis of hierarchical Eu ₂ O ₃ nanostructures templated by PS-b-PMAA: morphology control via simple variation of water contents. Journal of Materials Chemistry A, 2015, 3, 5789-5793.	10.3	7
457	Toward Passive Defrosting with Heterogeneous Coatings. Matter, 2020, 3, 981-983.	10.0	7
458	Probing Nanoparticle/Membrane Interactions by Combining Amphiphilic Diblock Copolymer Assembly and Plasmonics. Journal of Physical Chemistry B, 2020, 124, 742-750.	2.6	7
459	STM of metal embedded and coated DNA and DNA-protein complexes. Journal of Microscopy, 1996, 182, 169-176.	1.8	6
460	Analyzing the Compaction of High-Porosity Microscopic Agglomerates. Australian Journal of Chemistry, 2005, 58, 671.	0.9	6
461	Structure of self-assembled n-dodecyl substituted azobenzene poly(phenylene) dendrimers on graphite. Journal of Materials Chemistry, 2005, 15, 3431.	6.7	6
462	Rupture force changes between the third strand and the double strand within an oligonucleotide-directed triplex in the presence of intercalative molecules. Applied Physics Letters, 2006, 89, 113902.	3.3	6
463	Miscibility of binary blends of ethylene/norbornene copolymers: Comparison to a lattice cluster theory. Polymer, 2007, 48, 6010-6017.	3 . 8	6
464	Experimental investigation of long time irradiation in polydiene solutions: reversibility and instabilities. Journal of Optics (United Kingdom), 2010, 12, 124013.	2.2	6
465	Colloids in external electric and magnetic fields: Colloidal crystals, pinning, chain formation, and electrokinetics. European Physical Journal: Special Topics, 2013, 222, 2881-2893.	2.6	6
466	Self-assembly beyond semifluorinated alkanes in a semifluorinated benzene derivative. Soft Matter, 2013, 9, 11334.	2.7	6
467	Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. Advances in Polymer Science, 2013, , 115-210.	0.8	6
468	Soft Nanocompositesâ€"From Interface Control to Interphase Formation. ACS Applied Materials & Interfaces, 2015, 7, 12380-12386.	8.0	6

#	Article	IF	CITATIONS
469	Droplets leap into action. Nature, 2015, 527, 41-42.	27.8	6
470	Surface forces between colloidal particles at high hydrostatic pressure. Physical Review E, 2016, 93, 022608.	2.1	6
471	Thermal Characterization of Dynamic Silicon Cantilever Array Sensors by Digital Holographic Microscopy. Sensors, 2017, 17, 1191.	3.8	6
472	Elastic wave propagation in smooth and wrinkled stratified polymer films. Nanotechnology, 2019, 30, 045709.	2.6	6
473	Interactions between a responsive microgel monolayer and a rigid colloid: from soft to hard interfaces. Physical Chemistry Chemical Physics, 2021, 23, 16754-16766.	2.8	6
474	The Force Required to Detach a Rotating Particle from a Liquidâ€"Fluid Interface. Langmuir, 2021, 37, 13012-13017.	3.5	6
475	Shuffling gait motion of an aerodynamically driven wall-bound drop. Physical Review Fluids, 2020, 5, .	2.5	6
476	Stress and failure at mechanical contacts of microspheres under uniaxial compression. Journal of Applied Physics, 2007, 101, 084908.	2.5	5
477	Localized instabilities of colloidal motion in ac electric field gradients. Journal of Physics Condensed Matter, 2008, 20, 404212.	1.8	5
478	Resonance enhanced dynamic light scattering. Review of Scientific Instruments, 2011, 82, 015102.	1.3	5
479	Pinning-induced Variations of the Contact Angle of Drops on Microstructured Surfaces. Chemistry Letters, 2012, 41, 1343-1345.	1.3	5
480	Nanoadhesion on Rigid Methylâ€Terminated Biphenyl Thiol Monolayers: A Highâ€Rate Dynamic Force Spectroscopy Study. ChemPhysChem, 2013, 14, 543-549.	2.1	5
481	Fluorescence correlation spectroscopy of repulsive systems: Theory, simulation, and experiment. Journal of Chemical Physics, 2013, 138, 214902.	3.0	5
482	Measuring contact angle and meniscus shape with a reflected laser beam. Review of Scientific Instruments, 2014, 85, 013703.	1.3	5
483	Liquid Marbles: Light-Driven Delivery and Release of Materials Using Liquid Marbles (Adv. Funct. Mater.) Tj ETQq1	1 0.78431 14.9	l 4 ₅ rgBT /O <mark>v€</mark>
484	Polarization dependence of plasmonic near-field enhanced photoemission from cross antennas. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	5
485	Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids. Journal of Colloid and Interface Science, 2016, 469, 242-256.	9.4	5
486	Nano-mechanical Behavior of Calcium Silicate Hydrate and Calcium Hydroxide in Cement Paste: Elevated Peak-Force Study. International Journal of Civil Engineering, 2018, 16, 273-280.	2.0	5

#	Article	IF	CITATIONS
487	Phase Diagram of Tapered Copolymers Based on Isoprene and Styrene. Macromolecular Chemistry and Physics, 0, , 2200033.	2.2	5
488	Interaction between solid surfaces in a polymer melt studied by atomic force microscopy. European Polymer Journal, 2005, 41, 663-667.	5.4	4
489	Forces Between Solid Surfaces Across Polymer Melts as Revealed by Atomic Force Microscopy. Soft Materials, 2007, 5, 49-60.	1.7	4
490	Impedance spectroscopy investigation of conjugated polymer coated core-shell nanoparticles. Journal of Applied Physics, 2009, 106, 063706.	2.5	4
491	Electrical Scanning Probe Microscopy of an Integrated Blocking Layer. Journal of Nanoscience and Nanotechnology, 2010, 10, 6840-6844.	0.9	4
492	Probing dynamics near surfaces: waveguide enhanced dynamic light scattering. Soft Matter, 2011, 7, 1501-1505.	2.7	4
493	Wetting on the Microscale: Shape of a Liquid Drop on a Microstructured Surface at Different Length Scales. Langmuir, 2012, 28, 10136-10139.	3.5	4
494	Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer. Colloids and Surfaces B: Biointerfaces, 2013, 111, 439-445.	5.0	4
495	Diffusion of isolated surface-active molecules at the air/water interface. Colloid and Polymer Science, 2014, 292, 1817-1823.	2.1	4
496	Tapered copolymers of styrene and 4â€vinylbenzocyclobutene via carbanionic polymerization for crosslinkable polymer films. Journal of Polymer Science, 2020, 58, 181-192.	3.8	4
497	Versatile high-speed confocal microscopy using a single laser beam. Review of Scientific Instruments, 2020, 91, 033706.	1.3	4
498	Flash Brillouin Scattering: A Confocal Technique for Measuring Glass Transitions at High Scan Rates. ACS Photonics, 2021, 8, 531-539.	6.6	4
499	Quantum efficiency of native and mutant bacteriorhodopsin obtained from blue light induced relaxation experiments. European Biophysics Journal, 1990, 19, 31.	2.2	3
500	Interaction between two solid surfaces across PDMS: influence of chain length and end group. Composite Interfaces, 2005, 12, 805-815.	2.3	3
501	A new method for the analysis of compaction processes in high-porosity agglomerates. Granular Matter, 2008, 10, 89-91.	2.2	3
502	Surface-Induced Ordering of Liquid Crystal on Modified Surfaces. , 2008, , 39-47.		3
503	Time-dependent Dynamic Receding Contact Angles Studied during the Flow of Dilute Aqueous Surfactant Solutions through Fluorinated Microtubes. Chemistry Letters, 2012, 41, 1232-1234.	1.3	3
504	Electrical Characterization of Solar Cell Materials Using Scanning Probe Microscopy. Nanoscience and Technology, 2012, , 551-573.	1.5	3

#	Article	IF	CITATIONS
505	Kinetics of Light-Induced Concentration Patterns in Transparent Polymer Solutions. Journal of Physical Chemistry B, 2017, 121, 7180-7189.	2.6	3
506	Engineering von Proteinen an OberflÄ z hen: Von komplementÄ z er Charakterisierung zu MaterialoberflÄ z hen mit maÄŸgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830.	2.0	3
507	Wettingâ€Empowered Surface Functions for Engineering Applications. Advanced Materials Interfaces, 2021, 8, 2001914.	3.7	3
508	Real-time monitoring of biomechanical activity in aphids by laser speckle contrast imaging. Optics Express, 2021, 29, 28461.	3.4	3
509	Ordering kinetics of a tapered copolymer based on isoprene and styrene. Journal of Chemical Physics, 2022, 156, 134904.	3.0	3
510	Self-induced transparency in diblock copolymer dispersions. Optics Letters, 2012, 37, 2487.	3.3	2
511	Optical and redox properties of phenyl-capped cyclohexa[c]-oligothiophenes. Synthetic Metals, 2013, 181, 1-9.	3.9	2
512	CO ₂ Capture: Enhancing CO ₂ Capture using Robust Superomniphobic Membranes (Adv. Mater. 5/2017). Advanced Materials, 2017, 29, .	21.0	2
513	Initial stage sintering of polymer particles – Experiments and modelling of size-, temperature- and time-dependent contacts. EPJ Web of Conferences, 2017, 140, 13012.	0.3	2
514	Two-Stage Collapse of PNIPAM Brushes: Viscoelastic Changes Revealed by an Interferometric Laser Technique. Langmuir, 2019, 35, 15776-15783.	3.5	2
515	Tracer Mobility in Aqueous Poly(N-isopropylacrylamide) Grafted Networks: Effect of Interactions and Permanent Crosslinks., 2013,, 53-62.		2
516	Forced dynamic dewetting of structured surfaces: Influence of surfactants. Physical Review Fluids, 2019, 4, .	2.5	2
517	Flow profiles near receding three-phase contact lines: influence of surfactants. Soft Matter, 2021, 17, 10090-10100.	2.7	2
518	Adaptation and Recovery of a Styreneâ€Acrylic Acid Copolymer Surface to Water. Macromolecular Rapid Communications, 2022, , 2100733.	3.9	2
519	Wetting of ultrathin layers of polystyrene studied by atomic force microscopy. Studies in Surface Science and Catalysis, 2001, 132, 729-736.	1.5	1
520	Epitaxial growth of SrBi2Ta2O9on silicon. Ferroelectrics, 2001, 255, 111-122.	0.6	1
521	Chapter 7 Atomic Force Microscopy of Lipid Bilayers. Behavior Research Methods, 2006, 3, 219-249.	4.0	1
522	Contact fatigue in an alumina microcontact: A confocal laser scanning microscope study. Journal of Materials Research, 2007, 22, 3196-3200.	2.6	1

#	Article	IF	Citations
523	Title is missing!. Chinese Journal of Polymer Science (English Edition), 2007, 25, 95.	3.8	1
524	Thermal properties of nanocapsules measured by scanning force microscopy methods. Microelectronic Engineering, 2012, 97, 223-226.	2.4	1
525	Biomimetics: Insights into the Adhesive Mechanisms of Tree Frogs using Artificial Mimics (Adv. Funct.) Tj ETQq1 1	0.784314 14.9	rgBT /Overl
526	Particle and tracer diffusion in complex liquids. , 2013, , .		1
527	X-ray photoemission spectroscopy study of vertical phase separation in F8BT:PDI/ITO films for photovoltaic applications. , 2014, , .		1
528	Wet Adhesion: Torrent Frog-Inspired Adhesives: Attachment to Flooded Surfaces (Adv. Funct. Mater.) Tj ETQq0 0	0 <u>r</u> gBT /Ov	erlock 10 Tf
529	Wassermobilitäin der grenzfläheninduzierten Schmelzschicht von Eis/Tonmineralâ€Nanokompositen. Angewandte Chemie, 2021, 133, 7775-7781.	2.0	1
530	Wetting of the tarsal adhesive fluid determines underwater adhesion in ladybug beetles. Journal of Experimental Biology, 2021, 224, .	1.7	1
531	The Colloidal Probe Technique and its Application to Adhesion Force Measurements. , 2002, 19, 129.		1
532	The Colloidal Probe Technique and its Application to Adhesion Force Measurements., 2002, 19, 129.		1
533	Use of atomic force microscopy to probe surface charge densities in electrolyte solutions on a nanometer scale. , 0, , .		0
534	<title>Real-time atomic force fluorescence microscopy on living cells</title> ., 2001, 4434, 142.		0
535	"Structure and dynamics of complex polymeric materials―commemorating Tadeusz Pakula (1945–2005). Polymer, 2006, 47, 7167.	3.8	0
536	Polydiene Solutions: A Surprising Versatile Non Linear Optics Material. , 2010, , .		0
537	Drug Delivery System. , 2012, , 587-587.		0
538	Rupture Force of Single Small Drug Molecule Binding a Split Aptamer. Biophysical Journal, 2012, 102, 174a-175a.	0.5	0
539	Doping in Organic Semiconductors. , 2012, , 583-587.		0
540	Dye Sensitized Solar Cells. , 2012, , 604-604.		0

#	Article	IF	Citations
541	Wenn selbst Öl abperlt. Physik in Unserer Zeit, 2014, 45, 228-233.	0.0	O
542	Macromol. Rapid Commun. 23/2014. Macromolecular Rapid Communications, 2014, 35, 2044-2044.	3.9	0
543	Warum der Tropfen nicht hÃÞ. Nachrichten Aus Der Chemie, 2016, 64, 945-951.	0.0	O
544	Solvent-Dependent Light-Induced Structures in <i>Gem</i> -Dichlorocyclopropanated Polybutadiene Solutions. Journal of Physical Chemistry B, 2018, 122, 6995-7001.	2.6	0
545	Formation, Deformation, Rolling and Sliding of Particles and Particle Aggregates: Mechanisms and Applications. , 2019, , 89-114.		0
546	Photocontrolled Reconfigurable Surfaces: Reconfigurable Surfaces Based on Photocontrolled Dynamic Bonds (Adv. Funct. Mater. 26/2020). Advanced Functional Materials, 2020, 30, 2070174.	14.9	0
547	Self-Recovery Superhydrophobic Surfaces. , 2021, , 39-61.		0
548	Dynamic studies on living cells with an atomic force fluorescence microscope. , 2001, , .		0
549	Dip-Pen Nanolithography. , 2016, , 781-788.		0
550	Atomic Force Microscope Cantilevers Used as Sensors for Monitoring Microdrop Evaporation. Nanoscience and Technology, 2009, , 17-38.	1.5	0
551	Tapered copolymers of styrene and 4â€vinylbenzocyclobutene via carbanionic polymerization for crosslinkable polymer films. Journal of Polymer Science, 2020, 58, 181-192.	3.8	O

Enhanced Condensation on Soft Materials through Bulk Lubricant Infusion (Adv. Funct. Mater.) Tj ETQq0 0 0 rgBT /Qvgrlock 10 Tf 50 30