Vincent Courdavault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1869935/publications.pdf

Version: 2024-02-01

134 papers

5,173 citations

38 h-index 106344 65 g-index

144 all docs

144 docs citations

144 times ranked 4456 citing authors

#	Article	IF	CITATIONS
1	Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnology Advances, 2022, 54, 107871.	11.7	37
2	ARResting cytokinin signaling for salt-stress tolerance. Plant Science, 2022, 314, 111116.	3.6	4
3	Chromosome-scale genomes throw light on plant drug biosynthesis. Trends in Pharmacological Sciences, 2022, , .	8.7	2
4	The high osmolarity glycerol (HOG) pathway in fungi ^{â€} . Critical Reviews in Microbiology, 2022, 48, 657-695.	6.1	16
5	Social amoebae as a new chassis for drug production. Trends in Biotechnology, 2022, , .	9.3	O
6	More than a Catharanthus plant: A multicellular and pluri-organelle alkaloid-producing factory. Current Opinion in Plant Biology, 2022, 67, 102200.	7.1	27
7	Predicting Monoterpene Indole Alkaloid-Related Genes from Expression Data with Artificial Neural Networks. Methods in Molecular Biology, 2022, , 131-140.	0.9	1
8	Towards a Better Understanding of Toxin Biosynthesis in Seaweeds. ChemBioChem, 2022, 23, .	2.6	1
9	Puzzling Out the Colchicine Biosynthetic Pathway. ChemMedChem, 2021, 16, 621-623.	3.2	1
10	Microbial Cell Factories for Tetrahydroisoquinoline Alkaloid Production. ChemBioChem, 2021, 22, 639-641.	2.6	5
11	Engineered Microbes for Producing Anticholinergics. ChemBioChem, 2021, 22, 1368-1370.	2.6	2
12	Computational biotechnology guides elucidation of the biosynthesis of the plant anticancer drug camptothecin. Computational and Structural Biotechnology Journal, 2021, 19, 3659-3663.	4.1	2
13	Exploiting Spermidine <i>N</i> -Hydroxycinnamoyltransferase Diversity and Substrate Promiscuity to Produce Various Trihydroxycinnamoyl Spermidines and Analogues in Engineered Yeast. ACS Synthetic Biology, 2021, 10, 286-296.	3.8	6
14	Postharvest Treatment of Wood Biomass from a Large Collection of European Grape Varieties: Impact on the Selection of Polyphenol-Rich Byproducts. ACS Sustainable Chemistry and Engineering, 2021, 9, 3509-3517.	6.7	6
15	Turning up the Green Light. Trends in Cell Biology, 2021, 31, 143-145.	7.9	O
16	Peroxisomes: A New Hub for Metabolic Engineering in Yeast. Frontiers in Bioengineering and Biotechnology, 2021, 9, 659431.	4.1	18
17	Innovative Tools and Strategies for Optimizing Yeast Cell Factories. Trends in Biotechnology, 2021, 39, 488-504.	9.3	37
18	Improved virus-induced gene silencing allows discovery of a serpentine synthase gene in <i>Catharanthus roseus </i> . Plant Physiology, 2021, 187, 846-857.	4.8	20

#	Article	IF	CITATIONS
19	Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules, 2021, 26, 3596.	3.8	10
20	Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories. Microbial Biotechnology, 2021, 14, 2693-2699.	4.2	24
21	Plant to Insect Horizontal Gene Transfer: Empowering Whiteflies. Trends in Genetics, 2021, 37, 688-690.	6.7	2
22	Efficient Terpene Production by Marine Thraustochytrids: Shedding Light on the Thermodynamic Driving Force. MBio, 2021, 12, e0197621.	4.1	0
23	Yeasts as Biopharmaceutical Production Platforms. Frontiers in Fungal Biology, 2021, 2, .	2.0	17
24	Evaluation of type-B RR dimerization in poplar: A mechanism to preserve signaling specificity?. Plant Science, 2021, 313, 111068.	3.6	3
25	Metabolic engineering for plant natural products biosynthesis: new procedures, concrete achievements and remaining limits. Natural Product Reports, 2021, 38, 2145-2153.	10.3	48
26	Alternative splicing creates a pseudo-strictosidine \hat{l}^2 - <scp>d</scp> -glucosidase modulating alkaloid synthesis in <i>Catharanthus roseus</i> - Plant Physiology, 2021, 185, 836-856.	4.8	19
27	Tonoplast and Peroxisome Targeting of \hat{l}^3 -tocopherol N-methyltransferase Homologs Involved in the Synthesis of Monoterpene Indole Alkaloids. Plant and Cell Physiology, 2021, , .	3.1	0
28	Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs. Current Opinion in Biotechnology, 2020, 65, 17-24.	6.6	42
29	Tracking the Origin and Evolution of Plant Metabolites. Trends in Plant Science, 2020, 25, 1182-1184.	8.8	9
30	Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes. Cells, 2020, 9, 2526.	4.1	14
31	Identifying Genes Involved in Alkaloid Biosynthesis in Vinca minor through Transcriptomics and Gene Co-Expression Analysis. Biomolecules, 2020, 10, 1595.	4.0	12
32	Synthesis of (â^')-Melodinine K: A Case Study of Efficiency in Natural Product Synthesis. Journal of Natural Products, 2020, 83, 2425-2433.	3.0	19
33	Developmental Methylome of the Medicinal Plant Catharanthus roseus Unravels the Tissue-Specific Control of the Monoterpene Indole Alkaloid Pathway by DNA Methylation. International Journal of Molecular Sciences, 2020, 21, 6028.	4.1	14
34	Towards the Microbial Production of Plant-Derived Anticancer Drugs. Trends in Cancer, 2020, 6, 444-448.	7.4	38
35	Identifying Missing Biosynthesis Enzymes of Plant Natural Products. Trends in Pharmacological Sciences, 2020, 41, 142-146.	8.7	37
36	Cellular and Subcellular Compartmentation of the 2C-Methyl-D-Erythritol 4-Phosphate Pathway in the Madagascar Periwinkle. Plants, 2020, 9, 462.	3.5	19

#	Article	IF	CITATIONS
37	Virus-Induced Gene Silencing: Hush Genes to Make Them Talk. Trends in Plant Science, 2020, 25, 714-715.	8.8	6
38	A Biolistic-Mediated Virus-Induced Gene Silencing in Apocynaceae to Map Biosynthetic Pathways of Alkaloids. Methods in Molecular Biology, 2020, 2172, 93-110.	0.9	1
39	Stilbenoid-Enriched Grape Cane Extracts for the Biocontrol of Grapevine Diseases. Progress in Biological Control, 2020, , 215-239.	0.5	6
40	ALSV-Based Virus-Induced Gene Silencing in Apple Tree (MalusÂ×Âdomestica L.). Methods in Molecular Biology, 2020, 2172, 183-197.	0.9	2
41	Improved gene co-expression network quality through expression dataset down-sampling and network aggregation. Scientific Reports, 2019, 9, 14431.	3.3	26
42	Megaviruses: An involvement in phytohormone receptor gene transfer in brown algae?. Gene, 2019, 704, 149-151.	2.2	5
43	New Insight into HPts as Hubs in Poplar Cytokinin and Osmosensing Multistep Phosphorelays: Cytokinin Pathway Uses Specific HPts. Plants, 2019, 8, 591.	3.5	12
44	Setting-up a fast and reliable cytokinin biosensor based on a plant histidine kinase receptor expressed in Saccharomyces cerevisiae. Journal of Biotechnology, 2019, 289, 103-111.	3.8	7
45	Genome-wide identification and biochemical characterization of the UGT88F subfamily in Malus x domestica Borkh. Phytochemistry, 2019, 157, 135-144.	2.9	10
46	Vineyard evaluation of stilbenoidâ€rich grape cane extracts against downy mildew: a largeâ€scale study. Pest Management Science, 2019, 75, 1252-1257.	3.4	25
47	Diversity and Evolution of Sensor Histidine Kinases in Eukaryotes. Genome Biology and Evolution, 2019, 11, 86-108.	2.5	28
48	A <scp>BAHD</scp> acyltransferase catalyzing 19â€∢i>Oàeacetylation of tabersonine derivatives in roots of <i>Catharanthus roseus</i> enables combinatorial synthesis of monoterpene indole alkaloids. Plant Journal, 2018, 94, 469-484.	5.7	46
49	Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science, 2018, 360, 1235-1239.	12.6	279
50	A synthetic construct for genetic engineering of the emerging pathogenic yeast Candida auris. Plasmid, 2018, 95, 7-10.	1.4	8
51	A standardized toolkit for genetic engineering of CTG clade yeasts. Journal of Microbiological Methods, 2018, 144, 152-156.	1.6	19
52	Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chemistry, 2018, 240, 1022-1027.	8.2	40
53	Highlighting type A RRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus. Plant Science, 2018, 277, 68-78.	3.6	8
54	Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes. Nature Chemical Biology, 2018, 14, 760-763.	8.0	50

#	Article	IF	CITATIONS
55	Two Tabersonine 6,7-Epoxidases Initiate Lochnericine-Derived Alkaloid Biosynthesis in Catharanthus roseus. Plant Physiology, 2018, 177, 1473-1486.	4.8	34
56	Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. Frontiers in Plant Science, 2018, 9, 798.	3.6	41
57	Ranking genome-wide correlation measurements improves microarray and RNA-seq based global and targeted co-expression networks. Scientific Reports, 2018, 8, 10885.	3.3	73
58	Vacuole-Targeted Proteins: Ins and Outs of Subcellular Localization Studies. Methods in Molecular Biology, 2018, 1789, 33-54.	0.9	4
59	The Identification of Phytohormone Receptor Homologs in Early Diverging Fungi Suggests a Role for Plant Sensing in Land Colonization by Fungi. MBio, 2017, 8, .	4.1	41
60	An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nature Plants, 2017, 3, 16208.	9.3	123
61	Virus-induced gene silencing in Rauwolfia species. Protoplasma, 2017, 254, 1813-1818.	2.1	15
62	Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host–pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii. Research in Microbiology, 2017, 168, 644-654.	2.1	8
63	Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (MalusÂ×Âdomestica) Tj ETQq 45-60.	1 1 0.784 3.2	314 rgBT 0
64	Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Scientific Reports, 2017, 7, 40453.	3.3	39
65	A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nature Communications, 2017, 8, 316.	12.8	117
66	CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. Frontiers in Plant Science, 2017, 8, 1614.	3.6	27
67	Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress. International Journal of Molecular Sciences, 2016, 17, 2061.	4.1	24
68	Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence. Frontiers in Microbiology, 2016, 7, 1951.	3.5	40
69	Class II Cytochrome P450 Reductase Governs the Biosynthesis of Alkaloids. Plant Physiology, 2016, 172, 1563-1577.	4.8	44
70	An additionalMeyerozyma guilliermondii IMH3gene confers mycophenolic acid resistance in fungal CTG clade species. FEMS Yeast Research, 2016, 16, fow078.	2.3	5
71	Prequels to Synthetic Biology. Methods in Enzymology, 2016, 576, 167-206.	1.0	13
72	Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity. Nature Communications, 2016, 7, 12116.	12.8	85

#	Article	IF	Citations
73	Molecular evolution of parsnip (⟨i⟩Pastinaca sativa⟨ i⟩) membraneâ€bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis. New Phytologist, 2016, 211, 332-344.	7.3	59
74	Virusâ€induced gene silencing in <i>Catharanthus roseus</i> by biolistic inoculation of tobacco rattle virus vectors. Plant Biology, 2015, 17, 1242-1246.	3.8	16
75	De novo production of the plant-derived alkaloid strictosidine in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3205-3210.	7.1	373
76	Hybrid histidine kinases in pathogenic fungi. Molecular Microbiology, 2015, 95, 914-924.	2.5	68
77	Biosynthetic Origin of <i>E</i> -Resveratrol Accumulation in Grape Canes during Postharvest Storage. Journal of Agricultural and Food Chemistry, 2015, 63, 1631-1638.	5.2	59
78	Insights into B-type RR members as signaling partners acting downstream of HPt partners of HK1 in the osmotic stress response in Populus. Plant Physiology and Biochemistry, 2015, 94, 244-252.	5.8	11
79	Discovery of a P450-catalyzed step in vindoline biosynthesis: a link between the aspidosperma and eburnamine alkaloids. Chemical Communications, 2015, 51, 7626-7628.	4.1	50
80	Unlocking the Diversity of Alkaloids in Catharanthus roseus: Nuclear Localization Suggests Metabolic Channeling in Secondary Metabolism. Chemistry and Biology, 2015, 22, 336-341.	6.0	103
81	Composition and Tissue-Specific Distribution of Stilbenoids in Grape Canes Are Affected by Downy Mildew Pressure in the Vineyard. Journal of Agricultural and Food Chemistry, 2015, 63, 8472-8477.	5.2	26
82	Characterization of a spermidine hydroxycinnamoyltransferase in <i>Malus domestica</i> highlights the evolutionary conservation of trihydroxycinnamoyl spermidines in pollen coat of core Eudicotyledons. Journal of Experimental Botany, 2015, 66, 7271-7285.	4.8	62
83	Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics, 2015, 16, 619.	2.8	54
84	Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. Phytochemistry, 2015, 113, 9-23.	2.9	92
85	Illuminating Fungal Infections with Bioluminescence. PLoS Pathogens, 2014, 10, e1004179.	4.7	19
86	Optimized genetic transformation of <i>Zanthoxylum zanthoxyloides</i> by <i>Agrobacterium rhizogenes</i> and the production of chelerythrine and skimmiamine in hairy root cultures. Engineering in Life Sciences, 2014, 14, 95-99.	3.6	9
87	Subcellular localization of the histidine kinase receptors Sln1p, Nik1p and Chk1p in the yeast CTG clade species Candida guilliermondii. Fungal Genetics and Biology, 2014, 65, 25-36.	2.1	14
88	A look inside an alkaloid multisite plant: the Catharanthus logistics. Current Opinion in Plant Biology, 2014, 19, 43-50.	7.1	135
89	ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells. Journal of Plant Physiology, 2014, 171, 1510-1513.	3.5	14
90	Disrupting the methionine biosynthetic pathway in <i>Candida guilliermondii</i> : characterization of the <i>MET2</i> gene as counterâ€selectable marker. Yeast, 2014, 31, 243-251.	1.7	7

#	Article	IF	Citations
91	Antifungal Activity of Resveratrol Derivatives against <i>Candida</i> Species. Journal of Natural Products, 2014, 77, 1658-1662.	3.0	67
92	A new series of vectors for constitutive, inducible or repressible gene expression in Candida guilliermondii. Journal of Biotechnology, 2014, 180, 37-42.	3.8	10
93	Biotechnological potential of the fungal CTG clade species in the synthetic biology era. Trends in Biotechnology, 2014, 32, 167-168.	9.3	22
94	Transformation of Candida guilliermondiiwild-type strains using the Staphylococcus aureus MRSA 252 blegene as a phleomycin-resistant marker. FEMS Yeast Research, 2013, 13, 354-358.	2.3	13
95	Deciphering the Evolution, Cell Biology and Regulation of Monoterpene Indole Alkaloids. Advances in Botanical Research, 2013, 68, 73-109.	1.1	22
96	Characterization of an autonomously replicating sequence in Candida guilliermondii. Microbiological Research, 2013, 168, 580-588.	5.3	16
97	Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain. Biotechnology Letters, 2013, 35, 1035-1043.	2.2	21
98	Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Current Genetics, 2013, 59, 73-90.	1.7	61
99	Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry, 2013, 85, 36-43.	2.9	123
100	In plantavalidation of HK1 homodimerization and recruitment of preferential HPt downstream partners involved in poplar multistep phosphorelay systems. Plant Biosystems, 2013, 147, 991-995.	1.6	7
101	A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in <i>Catharanthus roseus</i>	4.8	97
102	Characterization of histidineâ€aspartate kinase <scp>HK1</scp> and identification of histidine phosphotransfer proteins as potential partners in a <i>Populus</i> multistep phosphorelay. Physiologia Plantarum, 2013, 149, 188-199.	5.2	19
103	Emerging and Emerged Pathogenic Candida Species: Beyond the Candida albicans Paradigm. PLoS Pathogens, 2013, 9, e1003550.	4.7	219
104	Triple subcellular targeting of isopentenyl diphosphate isomerases encoded by a single gene. Plant Signaling and Behavior, 2012, 7, 1495-1497.	2.4	13
105	An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature, 2012, 492, 138-142.	27.8	298
106	A TRP5/5-fluoroanthranilic acid counter-selection system for gene disruption in Candida guilliermondii. Current Genetics, 2012, 58, 245-254.	1.7	15
107	A type-B response regulator drives the expression of the hydroxymethylbutenyl diphosphate synthase gene in periwinkle. Journal of Plant Physiology, 2012, 169, 1571-1574.	3.5	7
108	Cycloheximide as a tool to investigate protein import in peroxisomes: A case study of the subcellular localization of isoprenoid biosynthetic enzymes. Journal of Plant Physiology, 2012, 169, 825-829.	3.5	7

#	Article	IF	CITATIONS
109	Optimization of the URA-blaster disruption system in Candida guilliermondii: Efficient gene targeting using the URA3 marker. Journal of Microbiological Methods, 2012, 91, 117-120.	1.6	12
110	Identification of five B-type response regulators as members of a multistep phosphorelay system interacting with histidine-containing phosphotransfer partners of Populus osmosensor. BMC Plant Biology, 2012, 12, 241.	3 . 6	10
111	Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway. Molecular Biology Reports, 2012, 39, 5433-5447.	2.3	17
112	A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. Plant Molecular Biology, 2012, 79, 443-459.	3.9	60
113	Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus. Molecular Biology Reports, 2012, 39, 3235-3243.	2.3	34
114	Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade. Microbiology (United Kingdom), 2012, 158, 585-600.	1.8	29
115	Prenylated Proteins Are Required for Methyl-Jasmonate-Induced Monoterpenoid Indole Alkaloids Biosynthesis in Catharanthus roseus. , 2012, , 285-296.		0
116	Fluorescent protein fusions in Candida guilliermondii. Fungal Genetics and Biology, 2011, 48, 1004-1011.	2.1	19
117	Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. Journal of Plant Physiology, 2011, 168, 549-557.	3.5	76
118	The subcellular localization of periwinkle farnesyl diphosphate synthase provides insight into the role of peroxisome in isoprenoid biosynthesis. Journal of Plant Physiology, 2011, 168, 2110-2116.	3.5	46
119	Molecular cloning and characterisation of two calmodulin isoforms of the Madagascar periwinkle <i>Catharanthus roseus </i>	3.8	7
120	The subcellular organization of strictosidine biosynthesis in ⟨i⟩Catharanthusâ€froseus⟨ i⟩ epidermis highlights several transâ€ŧonoplast translocations of intermediate metabolites. FEBS Journal, 2011, 278, 749-763.	4.7	58
121	Drug-resistant cassettes for the efficient transformation of Candida guilliermondiiâ€∫ wild-type strains. FEMS Yeast Research, 2011, 11, 457-463.	2.3	30
122	Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta, 2011, 234, 903-914.	3.2	126
123	Molecular Characterization of an Aux/IAA of Catharanthus roseus. Journal of Plant Growth Regulation, 2011, 30, 235-241.	5.1	6
124	Subcellular evidence for the involvement of peroxisomes in plant isoprenoid biosynthesis. Plant Signaling and Behavior, 2011, 6, 2044-2046.	2.4	24
125	Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"?. BMC Plant Biology, 2010, 10, 182.	3.6	129
126	Biosynthesis and Regulation of Alkaloids. , 2010, , 139-160.		22

#	Article	IF	CITATIONS
127	Proteins prenylated by type I protein geranylgeranyltransferase act positively on the jasmonate signalling pathway triggering the biosynthesis of monoterpene indole alkaloids in Catharanthus roseus. Plant Cell Reports, 2009, 28, 83-93.	5.6	21
128	Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Reports, 2009, 28, 1215-1234.	5 . 6	105
129	Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochemistry Reviews, 2007, 6, 341-351.	6.5	46
130	Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Molecular Biology, 2007, 65, 13-30.	3.9	103
131	Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs. Planta, 2006, 223, 1191-1200.	3.2	68
132	CaaX-prenyltransferases are essential for expression of genes involved in the early stages of monoterpenoid biosynthetic pathwayin Catharanthus roseus cells. Plant Molecular Biology, 2005, 57, 855-870.	3.9	40
133	Characterisation of CaaX-prenyltransferases in Catharanthus roseus: relationships with the expression of genes involved in the early stages of monoterpenoid biosynthetic pathway. Plant Science, 2005, 168, 1097-1107.	3. 6	27
134	Isolation of a cDNA encoding the alpha-subunit of CAAX-prenyltransferases from Catharanthus roseus and the expression of the active recombinant protein farnesyltransferase. Cellular and Molecular Biology Letters, 2005, 10, 649-57.	7.0	3