
Ann Marie Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1869746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature, 1996, 382, 685-691.	27.8	1,947
2	RAGE Mediates a Novel Proinflammatory Axis. Cell, 1999, 97, 889-901.	28.9	1,727
3	RACE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nature Medicine, 2003, 9, 907-913.	30.7	1,277
4	Blockade of RAGE–amphoterin signalling suppresses tumour growth and metastases. Nature, 2000, 405, 354-360.	27.8	1,137
5	Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nature Medicine, 1998, 4, 1025-1031.	30.7	1,077
6	The Receptor for Advanced Glycation End Products (RAGE) Is a Cellular Binding Site for Amphoterin. Journal of Biological Chemistry, 1995, 270, 25752-25761.	3.4	1,027
7	The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. Journal of Clinical Investigation, 2001, 108, 949-955.	8.2	916
8	Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E685-E694.	3.5	890
9	N ε-(Carboxymethyl)Lysine Adducts of Proteins Are Ligands for Receptor for Advanced Glycation End Products That Activate Cell Signaling Pathways and Modulate Gene Expression. Journal of Biological Chemistry, 1999, 274, 31740-31749.	3.4	796
10	RAGE Drives the Development of Glomerulosclerosis and Implicates Podocyte Activation in the Pathogenesis of Diabetic Nephropathy. American Journal of Pathology, 2003, 162, 1123-1137.	3.8	544
11	Characterization and Functional Analysis of the Promoter of RACE, the Receptor for Advanced Glycation End Products. Journal of Biological Chemistry, 1997, 272, 16498-16506.	3.4	444
12	Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. Journal of Clinical Investigation, 2004, 113, 1641-1650.	8.2	422
13	Expression of Advanced Glycation End Products and Their Cellular Receptor RAGE in Diabetic Nephropathy and Nondiabetic Renal Disease. Journal of the American Society of Nephrology: JASN, 2000, 11, 1656-1666.	6.1	406
14	Blockade of Receptor for Advanced Glycation End-Products Restores Effective Wound Healing in Diabetic Mice. American Journal of Pathology, 2001, 159, 513-525.	3.8	394
15	Protein Glycation. Circulation Research, 2004, 95, 233-238.	4.5	390
16	Mechanisms of Disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 285-293.	2.8	346
17	Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE–/– mice. Journal of Clinical Investigation, 2008, 118, 183-194.	8.2	325
18	Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. Journal of Clinical Investigation, 2000, 105, 1117-1124.	8.2	307

#	Article	IF	CITATIONS
19	Interaction of the RAGE Cytoplasmic Domain with Diaphanous-1 Is Required for Ligand-stimulated Cellular Migration through Activation of Rac1 and Cdc42. Journal of Biological Chemistry, 2008, 283, 34457-34468.	3.4	292
20	Central role of RAGE-dependent neointimal expansion in arterial restenosis. Journal of Clinical Investigation, 2003, 111, 959-972.	8.2	287
21	Advanced glycation endproducts (AGEs) induce oxidant stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. Journal of Periodontal Research, 1996, 31, 508-515.	2.7	248
22	Receptor for Advanced-Glycation End Products. Circulation, 2006, 113, 1226-1234.	1.6	203
23	Central role of RAGE-dependent neointimal expansion in arterial restenosis. Journal of Clinical Investigation, 2003, 111, 959-972.	8.2	195
24	Highlighting Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e1-e8.	2.4	179
25	Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. Journal of Diabetes Research, 2016, 2016, 1-18.	2.3	177
26	Advanced Glycation End Product Recognition by the Receptor for AGEs. Structure, 2011, 19, 722-732.	3.3	175
27	RAGE Regulates the Metabolic and Inflammatory Response to High-Fat Feeding in Mice. Diabetes, 2014, 63, 1948-1965.	0.6	168
28	Unlocking the biology of RAGE in diabetic microvascular complications. Trends in Endocrinology and Metabolism, 2014, 25, 15-22.	7.1	164
29	Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors. Big Data, 2015, 3, 277-287.	3.4	163
30	Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Letters, 2013, 587, 1119-1127.	2.8	162
31	Deletion of the Receptor for Advanced Glycation End Products Reduces Glomerulosclerosis and Preserves Renal Function in the Diabetic OVE26 Mouse. Diabetes, 2010, 59, 2043-2054.	0.6	151
32	Soluble RAGE: Therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochemical Pharmacology, 2010, 79, 1379-1386.	4.4	150
33	The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascular Pharmacology, 2012, 57, 160-167.	2.1	134
34	Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Frontiers in Cardiovascular Medicine, 2020, 7, 37.	2.4	134
35	Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. Journal of Allergy and Clinical Immunology, 2014, 134, 440-450.e3.	2.9	133
36	RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-α and NF-κB. Journal of Experimental Medicine, 2005, 201, 473-484.	8.5	131

#	Article	IF	CITATIONS
37	Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. ELife, 2016, 5, .	6.0	126
38	RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1823-H1832.	3.2	121
39	The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Frontiers in Genetics, 2017, 8, 187.	2.3	109
40	Advanced Glycation End Products: Building on the Concept of the "Common Soil―in Metabolic Disease. Endocrinology, 2020, 161, .	2.8	104
41	Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome. Nature Microbiology, 2021, 6, 1245-1258.	13.3	101
42	Elevated plasma levels of vascular cell adhesion moleculeâ€1 (VCAMâ€1) in diabetic patients with microalbuminuria: a marker of vascular dysfunction and progressive vascular disease. British Journal of Haematology, 1996, 92, 747-750.	2.5	100
43	RAGE and Modulation of Ischemic Injury in the Diabetic Myocardium. Diabetes, 2008, 57, 1941-1951.	0.6	100
44	Randomized Pilot Trial of Bariatric Surgery Versus Intensive Medical Weight Management on Diabetes Remission in Type 2 Diabetic Patients Who Do NOT Meet NIH Criteria for Surgery and the Role of Soluble RAGE as a Novel Biomarker of Success. Annals of Surgery, 2014, 260, 617-624.	4.2	100
45	Signal Transduction in Receptor for Advanced Glycation End Products (RAGE). Journal of Biological Chemistry, 2012, 287, 5133-5144.	3.4	99
46	Diabetes Mellitus and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 558-568.	2.4	98
47	Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling and Up-regulation of Egr-1 in Hypoxic Macrophages. Journal of Biological Chemistry, 2010, 285, 23233-23240.	3.4	95
48	Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. Journal of Experimental Medicine, 2012, 209, 2339-2350.	8.5	95
49	The multiple faces of RAGE – opportunities for therapeutic intervention in aging and chronic disease. Expert Opinion on Therapeutic Targets, 2016, 20, 431-446.	3.4	83
50	RAGE Modulates Hypoxia/Reoxygenation Injury in Adult Murine Cardiomyocytes via JNK and GSK-3β Signaling Pathways. PLoS ONE, 2010, 5, e10092.	2.5	80
51	Soluble RAGEs — Prospects for treating & tracking metabolic and inflammatory disease. Vascular Pharmacology, 2015, 72, 1-8.	2.1	80
52	Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Scientific Reports, 2016, 6, 22450.	3.3	79
53	Formin mDia1 Mediates Vascular Remodeling via Integration of Oxidative and Signal Transduction Pathways. Circulation Research, 2012, 110, 1279-1293.	4.5	78
54	The receptor for advanced glycation end-products has a central role in mediating the effects of advanced glycation end-products on the development of vascular disease in diabetes mellitus. Nephrology Dialysis Transplantation, 1996, 11, 13-16.	0.7	73

#	Article	IF	CITATIONS
55	Receptor for Advanced Glycation End Products (RAGE) and Implications for the Pathophysiology of Heart Failure. Current Heart Failure Reports, 2012, 9, 107-116.	3.3	66
56	RAGE binds C1q and enhances C1q-mediated phagocytosis. Cellular Immunology, 2012, 274, 72-82.	3.0	60
57	RAGE binds preamyloid IAPP intermediates and mediates pancreatic β cell proteotoxicity. Journal of Clinical Investigation, 2018, 128, 682-698.	8.2	58
58	Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2244-2252.	3.8	56
59	Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 2015, 9, 485.	3.7	55
60	RAGE Suppresses ABCG1-Mediated Macrophage Cholesterol Efflux in Diabetes. Diabetes, 2015, 64, 4046-4060.	0.6	54
61	Diabetes Exacerbates Infection via Hyperinflammation by Signaling through TLR4 and RAGE. MBio, 2017, 8, .	4.1	52
62	Advanced glycation end products receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway. Free Radical Biology and Medicine, 2017, 112, 397-410.	2.9	52
63	S100A9-RAGE Axis Accelerates Formation of Macrophage-Mediated Extracellular Vesicle Microcalcification in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1838-1853.	2.4	52
64	Types of tobacco consumption and the oral microbiome in the United Arab Emirates Healthy Future (UAEHFS) Pilot Study. Scientific Reports, 2018, 8, 11327.	3.3	51
65	Change in the Molecular Dimension of a RAGE-Ligand Complex Triggers RAGE Signaling. Structure, 2016, 24, 1509-1522.	3.3	47
66	Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Frontiers in Endocrinology, 2021, 12, 636267.	3.5	47
67	The Receptor for Advanced Glycation End Products (RAGE) and DIAPH1: Implications for vascular and neuroinflammatory dysfunction in disorders of the central nervous system. Neurochemistry International, 2019, 126, 154-164.	3.8	44
68	Leukocyte Heterogeneity in Adipose Tissue, Including in Obesity. Circulation Research, 2020, 126, 1590-1612.	4.5	44
69	The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. , 2018, 08, .		41
70	Netrin-1 Alters Adipose Tissue Macrophage Fate and Function in Obesity. Immunometabolism, 2019, 1, .	1.6	41
71	2016 <i>ATVB</i> Plenary Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 613-621.	2.4	38
72	RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight, 2020, 5, .	5.0	38

#	Article	IF	CITATIONS
73	The Receptor for Advanced Glycation End Products (RAGE) Affects T Cell Differentiation in OVA Induced Asthma. PLoS ONE, 2014, 9, e95678.	2.5	38
74	A Receptor of the Immunoglobulin Superfamily Regulates Adaptive Thermogenesis. Cell Reports, 2019, 28, 773-791.e7.	6.4	35
75	Soluble RAGE Treatment Delays Progression of Amyotrophic Lateral Sclerosis in SOD1 Mice. Frontiers in Cellular Neuroscience, 2016, 10, 117.	3.7	34
76	The UAE healthy future study: a pilot for a prospective cohort study of 20,000 United Arab Emirates nationals. BMC Public Health, 2018, 18, 101.	2.9	32
77	Patterns of tobacco use in the United Arab Emirates Healthy Future (UAEHFS) pilot study. PLoS ONE, 2018, 13, e0198119.	2.5	32
78	<i>Ager</i> Deletion Enhances Ischemic Muscle Inflammation, Angiogenesis, and Blood Flow Recovery in Diabetic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1536-1547.	2.4	31
79	RAGE-Mediated Suppression of Interleukin-10 Results in Enhanced Mortality in a Murine Model of Acinetobacter baumannii Sepsis. Infection and Immunity, 2017, 85, .	2.2	30
80	Mechanisms of transcription factor acetylation and consequences in hearts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2221-2231.	3.8	28
81	Small-molecule antagonism of the interaction of the RAGE cytoplasmic domain with DIAPH1 reduces diabetic complications in mice. Science Translational Medicine, 2021, 13, eabf7084.	12.4	28
82	Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure. PLoS ONE, 2017, 12, e0184331.	2.5	27
83	Glycation & the RAGE axis: targeting signal transduction through DIAPH1. Expert Review of Proteomics, 2017, 14, 147-156.	3.0	25
84	The Formin, DIAPH1, is a Key Modulator of Myocardial Ischemia/Reperfusion Injury. EBioMedicine, 2017, 26, 165-174.	6.1	25
85	Silencing Myeloid Netrin-1 Induces Inflammation Resolution and Plaque Regression. Circulation Research, 2021, 129, 530-546.	4.5	25
86	Combinatorial Library of Improved Peptide Aptamers, CLIPs to Inhibit RAGE Signal Transduction in Mammalian Cells. PLoS ONE, 2013, 8, e65180.	2.5	25
87	Journey to a Receptor for Advanced Glycation End Products Connection in Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 614-627.	2.4	24
88	Aldose Reductase Acts as a Selective Derepressor of PPARÎ ³ and the Retinoic Acid Receptor. Cell Reports, 2016, 15, 181-196.	6.4	23
89	The Semaphorin 3E/PlexinD1 Axis Regulates Macrophage Inflammation in Obesity. Cell Metabolism, 2013, 18, 461-462.	16.2	20
90	The receptor for advanced glycation endproducts is a mediator of toxicity by IAPP and other proteotoxic aggregates: Establishing and exploiting common ground for novel amyloidosis therapies. Protein Science, 2018, 27, 1166-1180.	7.6	19

#	Article	IF	CITATIONS
91	Deletion of the formin <i>Diaph1</i> protects from structural and functional abnormalities in the murine diabetic kidney. American Journal of Physiology - Renal Physiology, 2018, 315, F1601-F1612.	2.7	18
92	The rationale and design of the personal diet study, a randomized clinical trial evaluating a personalized approach to weight loss in individuals with pre-diabetes and early-stage type 2 diabetes. Contemporary Clinical Trials, 2019, 79, 80-88.	1.8	18
93	Analysis of the Role of the Conserved Disulfide in Amyloid Formation by Human Islet Amyloid Polypeptide in Homogeneous and Heterogeneous Environments. Biochemistry, 2018, 57, 3065-3074.	2.5	17
94	Amyloidogenicity, Cytotoxicity, and Receptor Activity of Bovine Amylin: Implications for Xenobiotic Transplantation and the Design of Nontoxic Amylin Variants. ACS Chemical Biology, 2018, 13, 2747-2757.	3.4	17
95	Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1C93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. Journal of Neuroinflammation, 2021, 18, 139.	7.2	16
96	The Growing Problem of Obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e19-23.	2.4	15
97	Treatment effect with anti-RAGE F(ab′) ₂ antibody improves hind limb angiogenesis and blood flow in Type 1 diabetic mice with left femoral artery ligation. Vascular Medicine, 2015, 20, 212-218.	1.5	15
98	Metabolism, Obesity, and Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e166-e174.	2.4	15
99	AGE/RAGE/DIAPH1 axis is associated with immunometabolic markers and risk of insulin resistance in subcutaneous but not omental adipose tissue in human obesity. International Journal of Obesity, 2021, 45, 2083-2094.	3.4	15
100	Evolutionary Adaptation and Amyloid Formation: Does the Reduced Amyloidogenicity and Cytotoxicity of Ursine Amylin Contribute to the Metabolic Adaption of Bears and Polar Bears?. Israel Journal of Chemistry, 2017, 57, 750-761.	2.3	13
101	Reporting Sex and Sex Differences in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e171-e184.	2.4	13
102	An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation. Circulation Research, 2020, 126, 1565-1589.	4.5	13
103	TTP889, a Novel Orally Active Partial Inhibitor of FIXa Inhibits Clotting in Two A/V Shunt Models without Prolonging Bleeding Times Blood, 2005, 106, 1886-1886.	1.4	13
104	Incense Burning is Associated with Human Oral Microbiota Composition. Scientific Reports, 2019, 9, 10039.	3.3	12
105	Inflammation Meets Metabolism Roles: for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. Immunometabolism, 2021, 3, .	1.6	12
106	The RAGE/DIAPH1 Signaling Axis & Implications for the Pathogenesis of Diabetic Complications. International Journal of Molecular Sciences, 2022, 23, 4579.	4.1	12
107	Imaging RAGE expression in atherosclerotic plaques in hyperlipidemic pigs. EJNMMI Research, 2014, 4, 26.	2.5	11
108	RAGE Mediates Cholesterol Efflux Impairment in Macrophages Caused by Human Advanced Glycated Albumin. International Journal of Molecular Sciences, 2020, 21, 7265.	4.1	11

#	Article	IF	CITATIONS
109	MicroRNA-33 Inhibits Adaptive Thermogenesis and Adipose Tissue Beiging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1360-1373.	2.4	11
110	Recent Highlights of <i>ATVB</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 954-958.	2.4	9
111	Soluble Receptor for Advanced Glycation End Products Improves Stromal Cell–Derived Factor-1 Activity in Model Diabetic Environments. Advances in Wound Care, 2016, 5, 527-538.	5.1	9
112	Multiomics of World Trade Center Particulate Matter–induced Persistent Airway Hyperreactivity. Role of Receptor for Advanced Glycation End Products. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 219-233.	2.9	9
113	Annual Report on Sex in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e1-e9.	2.4	8
114	Neuronal–glial communication perturbations in murine SOD1G93A spinal cord. Communications Biology, 2022, 5, 177.	4.4	8
115	Glycation and a Spark of ALEs (Advanced Lipoxidation End Products) – Igniting RAGE/Diaphanous-1 and Cardiometabolic Disease. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	8
116	Insulin Resistance and Metabolic Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1753-1753.	2.4	7
117	Skin Autofluorescence, 5-Year Mortality, and Cardiovascular Events in Peripheral Arterial Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 697-699.	2.4	7
118	Myeloid ATG16L1 does not affect adipose tissue inflammation or body mass in mice fed high fat diet. Obesity Research and Clinical Practice, 2018, 12, 174-186.	1.8	7
119	The receptor for advanced glycation end products (RAGE) and DIAPH1: unique mechanisms and healing the wounded vascular system. Expert Review of Proteomics, 2019, 16, 471-474.	3.0	6
120	Diabetes and Cardiovascular Complications: The Epidemics Continue. Current Cardiology Reports, 2021, 23, 74.	2.9	6
121	Soluble Levels of Receptor for Advanced Glycation Endproducts (RAGE) and Progression of Atherosclerosis in Individuals Infected with Human Immunodeficiency Virus: ACTG NWCS 332. Inflammation, 2016, 39, 1354-1362.	3.8	5
122	The AGE-RAGE axis in an Arab population: The United Arab Emirates Healthy Futures (UAEHFS) pilot study. Journal of Clinical and Translational Endocrinology, 2017, 10, 1-8.	1.4	5
123	Temporal reliability of serum soluble and endogenous secretory receptors for advanced glycation end-products (sRAGE and esRAGE) in healthy women. Cancer Causes and Control, 2018, 29, 901-905.	1.8	5
124	Receptor for Advanced Glycation End Products is Involved in Platelet Hyperactivation and Arterial Thrombosis during Chronic Kidney Disease. Thrombosis and Haemostasis, 2020, 120, 1300-1312.	3.4	5
125	Soluble Receptor for Advanced Glycation End Products (sRAGE) Isoforms Predict Changes in Resting Energy Expenditure in Adults with Obesity during Weight Loss. Current Developments in Nutrition, 2022, 6, nzac046.	0.3	5
126	Aldose reductase modulates acute activation of mesenchymal markers via the β-catenin pathway during cardiac ischemia-reperfusion. PLoS ONE, 2017, 12, e0188981.	2.5	3

#	Article	IF	CITATIONS
127	Response by Daugherty et al to Letter Regarding Article, "Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies: A Statement From the Arteriosclerosis, Thrombosis, and Vascular Biology Council― Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e101-e102.	2.4	3
128	Macrophage-adipocyte communication and cardiac remodeling. Journal of Experimental Medicine, 2021, 218, .	8.5	3
129	Beneficial Effect of Glucose Control on Atherosclerosis Progression in Diabetic ApoEâ^'/â^ Mice: Shown by Rage Directed Imaging. International Journal of Molecular Imaging, 2014, 2014, 1-8.	1.3	2
130	Reduced expression of Munc13-1 in human and porcine diabetic peripheral nerve. Acta Histochemica, 2014, 116, 106-111.	1.8	2
131	Imaging VEGF Receptors and αvβ3 Integrins in a Mouse Hindlimb Ischemia Model of Peripheral Arterial Disease. Molecular Imaging and Biology, 2018, 20, 963-972.	2.6	2
132	Metabolic dysfunction in Emirati subjects in Abu Dhabi: Relationship to levels of soluble RAGEs. Journal of Clinical and Translational Endocrinology, 2019, 16, 100192.	1.4	2
133	Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1118-1119.	2.4	1
134	Improvement in Angiogenesis and Restoration of Blood Flow in Diabetic Mice by Sanguinate TM. FASEB Journal, 2011, 25, 1091.4.	0.5	1
135	RACE serves as a Signal Transduction Receptor for AÎ ² fibrils Mediating cell Stress. Biochemical Society Transactions, 2000, 28, A14-A14.	3.4	0
136	P3-036: Rage signal transduction and implications for neuroinflammation in Alzheimer's disease. , 2015, 11, P632-P632.		0
137	[O1–14–04]: RAGE AND DIAPHâ€1 REGULATE CRITICAL PHENOTYPES OF MICROGLIA IN HEALTHY AGING AN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P229.	ID _{0.8}	0
138	2346. Journal of Clinical and Translational Science, 2017, 1, 7-8.	0.6	0
139	Chronic low-dose rapamycin treatment fine tunes cardioprotective signalling in ischaemia-reperfused diabetic hearts. Cardiovascular Research, 2020, 116, 2038-2039.	3.8	0
140	Deletion of mDia1 is Protective Against Renal Damage in a Murine Model of Diabetes. FASEB Journal, 2015, 29, LB763.	0.5	0
141	Small Molecule Antagonists of RAGEâ€DIAPH1: Novel Therapeutic Opportunities in Metabolic and Chronic Disease. FASEB Journal, 2018, 32, 603.4.	0.5	0
142	Abstract 17023: Adipose Tissue Specific Temporal Deletion of Ager Induces Weight Loss in Diet Induced Obese Mice and Improves Glucose Homeostasis. Circulation, 2020, 142, .	1.6	0
143	Abstract 17025: Myeloid Rage Protects From Insulin Resistance in Mice Fed High Fat Diet. Circulation, 2020, 142, .	1.6	0
144	Abstract 148: AGES, Receptor for Advanced Glycation End Products (RAGE), Reverse Transmigration of Macrophages & Polarization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0

#	Article	IF	CITATIONS
145	<i>ATVB</i> : Entering the Next Era. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 809-810.	2.4	0
146	The association between mediators of the receptor for advanced glycation end product (RAGE) axis and immune checkpoint inhibitor (ICI)–induced colitis in patients with melanoma Journal of Clinical Oncology, 2022, 40, 9587-9587.	1.6	0