Miaoying Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1869045/publications.pdf Version: 2024-02-01

Μιλογινό Τιλν

#	Article	IF	CITATIONS
1	A Kazal-like Extracellular Serine Protease Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-related Protease P69B. Journal of Biological Chemistry, 2004, 279, 26370-26377.	3.4	301
2	A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease. Plant Physiology, 2007, 143, 364-377.	4.8	277
3	Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1654-1659.	7.1	260
4	A Second Kazal-Like Protease Inhibitor from Phytophthora infestans Inhibits and Interacts with the Apoplastic Pathogenesis-Related Protease P69B of Tomato. Plant Physiology, 2005, 138, 1785-1793.	4.8	222
5	Effector Specialization in a Lineage of the Irish Potato Famine Pathogen. Science, 2014, 343, 552-555.	12.6	179
6	Arabidopsis Actin-Depolymerizing Factor AtADF4 Mediates Defense Signal Transduction Triggered by the <i>Pseudomonas syringae</i> Effector AvrPphB Â Â. Plant Physiology, 2009, 150, 815-824.	4.8	141
7	Identification of multiple salicylic acid-binding proteins using two high throughput screens. Frontiers in Plant Science, 2014, 5, 777.	3.6	119
8	Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals. Frontiers in Immunology, 2016, 7, 206.	4.8	118
9	454 Genome Sequencing of <i>Pseudoperonospora cubensis</i> Reveals Effector Proteins with a QXLR Translocation Motif. Molecular Plant-Microbe Interactions, 2011, 24, 543-553.	2.6	110
10	Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Molecular Medicine, 2015, 21, 526-535.	4.4	97
11	Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Research, 2012, 22, 1631-1633.	12.0	92
12	Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors. BMC Microbiology, 2005, 5, 46.	3.3	90
13	A <i>Phytophthora palmivora</i> Extracellular Cystatin-Like Protease Inhibitor Targets Papain to Contribute to Virulence on Papaya. Molecular Plant-Microbe Interactions, 2018, 31, 363-373.	2.6	88
14	Arabidopsis Actin-Depolymerizing Factor-4 Links Pathogen Perception, Defense Activation and Transcription to Cytoskeletal Dynamics. PLoS Pathogens, 2012, 8, e1003006.	4.7	86
15	Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid. PLoS Pathogens, 2016, 12, e1005518.	4.7	82
16	Linking sequence to phenotype in Phytophthora–plant interactions. Trends in Microbiology, 2004, 12, 193-200.	7.7	65
17	The combined use of photoaffinity labeling and surface plasmon resonanceâ€based technology identifies multiple salicylic acidâ€binding proteins. Plant Journal, 2012, 72, 1027-1038.	5.7	62
18	Salicylic acid binding of mitochondrial alphaâ€ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against <i>tobacco mosaic virus</i> in tomato. New Phytologist, 2015, 205, 1296-1307.	7.3	55

MIAOYING TIAN

#	Article	IF	CITATIONS
19	Salicylic Acid Inhibits the Replication of <i>Tomato bushy stunt virus</i> by Directly Targeting a Host Component in the Replication Complex. Molecular Plant-Microbe Interactions, 2015, 28, 379-386.	2.6	46
20	Human GAPDH Is a Target of Aspirin's Primary Metabolite Salicylic Acid and Its Derivatives. PLoS ONE, 2015, 10, e0143447.	2.5	44
21	The <scp>A</scp> rabidopsis oligopeptidases <scp>TOP</scp> 1 and <scp>TOP</scp> 2 are salicylic acid targets that modulate <scp>SA</scp> â€mediated signaling and the immune response. Plant Journal, 2013, 76, 603-614.	5.7	41
22	A two disulfide bridge Kazal domain from Phytophthora exhibits stable inhibitory activity against serine proteases of the subtilisin family. BMC Biochemistry, 2005, 6, 15.	4.4	40
23	CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance. PLoS ONE, 2021, 16, e0253245.	2.5	35
24	The <i>Arabidopsis</i> Gain-of-Function Mutant <i>ssi4</i> Requires <i>RAR1</i> and <i>SGT1b</i> Differentially for Defense Activation and Morphological Alterations. Molecular Plant-Microbe Interactions, 2008, 21, 40-49.	2.6	30
25	The plant defense and pathogen counterdefense mediated by Hevea brasiliensis serine protease HbSPA and Phytophthora palmivora extracellular protease inhibitor PpEPI10. PLoS ONE, 2017, 12, e0175795.	2.5	22
26	Efficient targeted mutagenesis in allotetraploid sweet basil by CRISPR/Cas9. Plant Direct, 2020, 4, e00233.	1.9	21
27	Establishment of a simple and efficient Agrobacterium-mediated transformation system for Phytophthora palmivora. BMC Microbiology, 2016, 16, 204.	3.3	19
28	Suppression of Root-Knot Nematode by Vermicompost Tea Prepared From Different Curing Ages of Vermicompost. Plant Disease, 2017, 101, 734-737.	1.4	18
29	A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity. Scientific Reports, 2020, 10, 2319.	3.3	13
30	A qPCR approach to quantify the growth of basil downy mildew pathogen Peronospora belbahrii during infection. Current Plant Biology, 2018, 15, 2-7.	4.7	12
31	Molecular Cloning of HbPR-1 Gene from Rubber Tree, Expression of HbPR-1 Gene in Nicotiana benthamiana and Its Inhibition of Phytophthora palmivora. PLoS ONE, 2016, 11, e0157591.	2.5	11
32	Inhibition of a Hevea brasiliensis protease by a Kazal-like serine protease inhibitor from Phytophthora palmivora. Physiological and Molecular Plant Pathology, 2009, 74, 27-33.	2.5	8
33	Dual transcriptional analysis of Ocimum basilicum and Peronospora belbahrii in susceptible interactions. Plant Gene, 2022, 29, 100350.	2.3	4
34	Domain switching and host recognition. Molecular Microbiology, 2006, 61, 1091-1093.	2.5	2
35	Agrobacterium -mediated Transformation of Sweet Basil (Ocimum basilicum). Bio-protocol, 2020, 10, e3828.	0.4	2
36	Development, validation, and utility of species-specific diagnostic markers for detection of <i>Peronospora belbahrii</i> . Phytopathology, 2022, , .	2.2	1