
Andrew P Waters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1868863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses. Science, 2005, 307, 82-86.	12.6	743
2	Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, 2002, 419, 512-519.	27.8	666
3	Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature, 2002, 419, 537-542.	27.8	596
4	Complement-Like Protein TEP1 Is a Determinant of Vectorial Capacity in the Malaria Vector Anopheles gambiae. Cell, 2004, 116, 661-670.	28.9	566
5	High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nature Protocols, 2006, 1, 346-356.	12.0	552
6	A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Molecular and Biochemical Parasitology, 2004, 137, 23-33.	1.1	446
7	High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Molecular and Biochemical Parasitology, 2006, 145, 60-70.	1.1	426
8	Regulation of Sexual Development of Plasmodium by Translational Repression. Science, 2006, 313, 667-669.	12.6	407
9	A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature, 2014, 507, 253-257.	27.8	366
10	A Central Role for P48/45 in Malaria Parasite Male Gamete Fertility. Cell, 2001, 104, 153-164.	28.9	350
11	Proteome Analysis of Separated Male and Female Gametocytes Reveals Novel Sex-Specific Plasmodium Biology. Cell, 2005, 121, 675-687.	28.9	336
12	Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science, 1987, 238, 933-937.	12.6	330
13	From The Cover: Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11468-11473.	7.1	283
14	Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature, 1997, 385, 336-340.	27.8	277
15	The Fatty Acid Biosynthesis Enzyme Fabl Plays a Key Role in the Development of Liver-Stage Malarial Parasites. Cell Host and Microbe, 2008, 4, 567-578.	11.0	273
16	Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum. Cell, 2017, 171, 1532-1544.e15.	28.9	259
17	Circumsporozoite protein heterogeneity in the human malaria parasite Plasmodium vivax. Science, 1989, 245, 973-976.	12.6	254
18	A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biology, 2014, 12, 86.	3.8	251

2

#	Article	IF	CITATIONS
19	Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12194-12199.	7.1	245
20	Universal Features of Post-Transcriptional Gene Regulation Are Critical for Plasmodium Zygote Development. PLoS Pathogens, 2010, 6, e1000767.	4.7	237
21	Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3140-3144.	7.1	223
22	Stable transfection of malaria parasite blood stages. Science, 1995, 268, 1358-1362.	12.6	223
23	P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO Journal, 2001, 20, 3975-3983.	7.8	206
24	Visualisation and Quantitative Analysis of the Rodent Malaria Liver Stage by Real Time Imaging. PLoS ONE, 2009, 4, e7881.	2.5	205
25	Three Members of the 6-cys Protein Family of Plasmodium Play a Role in Gamete Fertility. PLoS Pathogens, 2010, 6, e1000853.	4.7	198
26	Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity. PLoS Pathogens, 2008, 4, e1000195.	4.7	191
27	Identification of a transcription factor in the mosquitoâ€invasive stage of malaria parasites. Molecular Microbiology, 2009, 71, 1402-1414.	2.5	188
28	Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Research, 2009, 37, 3788-3798.	14.5	177
29	Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. Cellular Microbiology, 2004, 6, 671-685.	2.1	171
30	A Cyclic GMP Signalling Module That Regulates Gliding Motility in a Malaria Parasite. PLoS Pathogens, 2009, 5, e1000599.	4.7	171
31	Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium knowlesi 66 kD merozoite antigen. Parasite Immunology, 1988, 10, 535-552.	1.5	167
32	Structure and expression of a post-transcriptionally regulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei. Molecular and Biochemical Parasitology, 1993, 59, 263-275.	1.1	158
33	A Role for Natural Regulatory T Cells in the Pathogenesis of Experimental Cerebral Malaria. American Journal of Pathology, 2007, 171, 548-559.	3.8	155
34	Developmental regulation of stage-specific ribosome populations in Plasmodium. Nature, 1989, 342, 438-440.	27.8	154
35	Precise Timing of Expression of a Plasmodium falciparum- derived Transgene in Plasmodium berghei Is a Critical Determinant of Subsequent Subcellular Localization. Journal of Biological Chemistry, 1998, 273, 15119-15124.	3.4	150
36	Plasmodium berghei: The application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitology Today, 1995, 11, 138-143.	3.0	139

#	Article	lF	CITATIONS
37	The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. International Journal for Parasitology, 2003, 33, 933-943.	3.1	139
38	The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands. EMBO Journal, 1999, 18, 5195-5204.	7.8	135
39	The Malaria Secretome: From Algorithms to Essential Function in Blood Stage Infection. PLoS Pathogens, 2008, 4, e1000084.	4.7	133
40	A Plasmodium Whole-Genome Synteny Map: Indels and Synteny Breakpoints as Foci for Species-Specific Genes. PLoS Pathogens, 2005, 1, e44.	4.7	131
41	Transfection of Malaria Parasites. Methods, 1997, 13, 134-147.	3.8	118
42	Drug resistance in eukaryotic microorganisms. Nature Microbiology, 2016, 1, 16092.	13.3	118
43	Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum. Molecular and Biochemical Parasitology, 2006, 149, 216-222.	1.1	107
44	Plasmepsin 4-Deficient Plasmodium berghei Are Virulence Attenuated and Induce Protective Immunity against Experimental Malaria. American Journal of Pathology, 2010, 176, 205-217.	3.8	105
45	The Plasmodium TRAP/MIC2 family member, TRAP-Like Protein (TLP), is involved in tissue traversal by sporozoites. Cellular Microbiology, 2008, 10, 1505-1516.	2.1	104
46	Egress of <i>Plasmodium berghei</i> gametes from their host erythrocyte is mediated by the MDV-1/PEG3 protein. Cellular Microbiology, 2009, 11, 1272-1288.	2.1	100
47	Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector. Cell Host and Microbe, 2015, 18, 122-131.	11.0	99
48	Negative selection using yeast cytosine deaminase/uracil phosphoribosyl transferase in Plasmodium falciparum for targeted gene deletion by double crossover recombination. Molecular and Biochemical Parasitology, 2006, 150, 118-121.	1.1	97
49	Selection by flow-sorting of genetically transformed, GFP-expressing blood stages of the rodent malaria parasite, Plasmodium berghei. Nature Protocols, 2006, 1, 614-623.	12.0	95
50	Plasmodium: Genus-Conserved Primers for Species Identification and Quantitation. Experimental Parasitology, 1995, 81, 182-190.	1.2	93
51	The selectable marker human dihydrofolate reductase enables sequential genetic manipulation of the Plasmodium berghei genome. Molecular and Biochemical Parasitology, 2000, 106, 199-212.	1.1	92
52	The Development of Genetic Tools for Dissecting the Biology of Malaria Parasites. Annual Review of Microbiology, 2000, 54, 157-185.	7.3	92
53	The cytoplasmic ribosomal RNAs of Plasmodium spp. Parasitology Today, 1995, 11, 134-138.	3.0	91
54	Gene Disruption of Plasmodium falciparum p52 Results in Attenuation of Malaria Liver Stage Development in Cultured Primary Human Hepatocytes. PLoS ONE, 2008, 3, e3549.	2.5	91

#	Article	IF	CITATIONS
55	Expression of a Plasmodium Gene Introduced into Subtelomeric Regions of Plasmodium berghei Chromosomes. Science, 1996, 271, 662-665.	12.6	90
56	Transition of Plasmodium Sporozoites into Liver Stage-Like Forms Is Regulated by the RNA Binding Protein Pumilio. PLoS Pathogens, 2011, 7, e1002046.	4.7	82
57	Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments. PLoS Pathogens, 2016, 12, e1006094.	4.7	82
58	Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nature Protocols, 2006, 1, 476-485.	12.0	81
59	High-Level Expression of <i>Plasmodium vivax</i> Apical Membrane Antigen 1 (AMA-1) in <i>Pichia pastoris</i> : Strong Immunogenicity in <i>Macaca mulatta</i> Immunized with <i>P. vivax</i> AMA-1 and Adjuvant SBAS2. Infection and Immunity, 1999, 67, 43-49.	2.2	81
60	Functional Characterization of the Plasmodium falciparum and P. berghei Homologues of Macrophage Migration Inhibitory Factor. Infection and Immunity, 2007, 75, 1116-1128.	2.2	79
61	Analysis of variation in PF83, an erythrocytic merozoite vaccine candidate antigen of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1990, 42, 285-287.	1.1	78
62	Transfection of the Primate Malaria Parasite Plasmodium knowlesi Using Entirely Heterologous Constructs. Journal of Experimental Medicine, 1997, 185, 1499-1504.	8.5	77
63	Inducible developmental reprogramming redefines commitment to sexual development in the malaria parasite Plasmodium berghei. Nature Microbiology, 2018, 3, 1206-1213.	13.3	77
64	Functional Equivalence of Structurally Distinct Ribosomes in the Malaria Parasite, Plasmodium berghei. Journal of Biological Chemistry, 2001, 276, 22638-22647.	3.4	73
65	Development and application of a positive-negative selectable marker system for use in reverse genetics in Plasmodium. Nucleic Acids Research, 2006, 34, e39-e39.	14.5	73
66	Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite. Nature Communications, 2016, 7, 10519.	12.8	72
67	<i>Plasmodium</i> gametocytes display homing and vascular transmigration in the host bone marrow. Science Advances, 2018, 4, eaat3775.	10.3	72
68	Activation of a PAK-MEK signalling pathway in malaria parasite-infected erythrocytes. Cellular Microbiology, 2011, 13, 836-845.	2.1	70
69	Simple and sensitive antimalarial drug screening in vitro and in vivo using transgenic luciferase expressing Plasmodium berghei parasites. International Journal for Parasitology, 2008, 38, 1651-1662.	3.1	69
70	Genetically attenuated P36p-deficient Plasmodium berghei sporozoites confer long-lasting and partial cross-species protection. International Journal for Parasitology, 2007, 37, 1511-1519.	3.1	68
71	Host Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites. PLoS Pathogens, 2015, 11, e1004882.	4.7	67
72	Plasmodium post-genomics: better the bug you know?. Nature Reviews Microbiology, 2006, 4, 344-357.	28.6	66

#	Article	IF	CITATIONS
73	Ribosomal RNA: Nature's own polymerase-amplified target for diagnosis. Parasitology Today, 1990, 6, 56-59.	3.0	64
74	Comparative genomics in Plasmodium: a tool for the identification of genes and functional analysis. Molecular and Biochemical Parasitology, 2001, 118, 147-154.	1.1	61
75	Comparison of in vivo and in vitro antimalarial activity of artemisinin, dihydroartemisinin and sodium artesunate in the Plasmodium berghei-rodent model. International Journal for Parasitology, 1994, 24, 589-594.	3.1	60
76	The Glutathione Biosynthetic Pathway of Plasmodium Is Essential for Mosquito Transmission. PLoS Pathogens, 2009, 5, e1000302.	4.7	58
77	Functional Identification of the Plasmodium Centromere and Generation of a Plasmodium Artificial Chromosome. Cell Host and Microbe, 2010, 7, 245-255.	11.0	58
78	Differentiation of Toxoplasma Gondii from Closely Related Coccidia by Riboprint Analysis and a Surface Antigen Gene Polymerase Chain Reaction. American Journal of Tropical Medicine and Hygiene, 1993, 48, 447-456.	1.4	57
79	A conserved U-rich RNA region implicated in regulation of translation in Plasmodium female gametocytes. Nucleic Acids Research, 2008, 36, 1176-1186.	14.5	56
80	Plasmodium cysteine repeat modular proteins 1?4: complex proteins with roles throughout the malaria parasite life cycle. Cellular Microbiology, 2007, 9, 1466-1480.	2.1	54
81	Gene synteny in species of Plasmodium. Molecular and Biochemical Parasitology, 1998, 93, 285-294.	1.1	53
82	The Ribosomal RNA Genes of Plasmodium. Advances in Parasitology, 1994, 34, 33-79.	3.2	52
83	Conserved location of genes on polymorphic chromosomes of four species of malaria parasites. Molecular and Biochemical Parasitology, 1994, 68, 285-296.	1.1	52
84	Rodent blood-stage <i>Plasmodium</i> survive in dendritic cells that infect naive mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11205-11210.	7.1	51
85	A genotype and phenotype database of genetically modified malaria-parasites. Trends in Parasitology, 2011, 27, 31-39.	3.3	51
86	Validation of the protein kinase <i>Pf</i> CLK3 as a multistage cross-species malarial drug target. Science, 2019, 365, .	12.6	51
87	PTRAMP; a conserved Plasmodium thrombospondin-related apical merozoite protein. Molecular and Biochemical Parasitology, 2004, 134, 225-232.	1.1	48
88	The use of transgenic Plasmodium berghei expressing the Plasmodium vivax antigen P25 to determine the transmission-blocking activity of sera from malaria vaccine trials. Vaccine, 2007, 25, 886-894.	3.8	48
89	Malaria parasites contain two identical copies of an elongation factor 1 alpha gene1Note: Nucleotide sequence data reported in this paper are available in the EMBL, GenBankâ,,¢ and DDJB databases under the accession numbers AJ224150, AJ224151, AJ224153 and AJ224154.1. Molecular and Biochemical Parasitology. 1998. 94, 1-12.	1.1	46
90	Improved negative selection protocol for Plasmodium berghei in the rodent malarial model. Malaria Journal, 2012, 11, 103.	2.3	46

#	Article	IF	CITATIONS
91	A cryptic cycle in haematopoietic niches promotes initiation of malaria transmission and evasion of chemotherapy. Nature Communications, 2018, 9, 1689.	12.8	45
92	Sirtuins of parasitic protozoa: In search of function(s). Molecular and Biochemical Parasitology, 2012, 185, 71-88.	1.1	44
93	Malaria parasites lacking eef1a have a normal S/M phase yet grow more slowly due to a longer G1 phase. Molecular Microbiology, 2003, 50, 1539-1551.	2.5	43
94	Gene targeting demonstrates that thePlasmodium bergheisubtilisin PbSUB2 is essential for red cell invasion and reveals spontaneous genetic recombination events. Cellular Microbiology, 2004, 6, 65-78.	2.1	43
95	Experimentally controlled downregulation of the histone chaperone FACT in <i>Plasmodium berghei</i> reveals that it is critical to male gamete fertility. Cellular Microbiology, 2011, 13, 1956-1974.	2.1	43
96	Differential expression in blood stages of the gene coding for the 21-kilodalton surface protein of ookinetes of Plasmodium berghei as detected by RNA in situ hybridisation. Molecular and Biochemical Parasitology, 1994, 68, 259-266.	1.1	42
97	Replication, expression and segregation of plasmid-borne DNA in genetically transformed malaria parasites. Molecular and Biochemical Parasitology, 1997, 86, 155-162.	1.1	42
98	Set regulation in asexual and sexual Plasmodium parasites reveals a novel mechanism of stage-specific expression. Molecular Microbiology, 2006, 60, 870-882.	2.5	42
99	Analysis of mutant Plasmodium berghei parasites lacking expression of multiple PbCCp genes. Molecular and Biochemical Parasitology, 2009, 163, 1-7.	1.1	41
100	Sequence of a small subunit rRNA gene of Schistosoma mansoni and its use in phylogenetic analysis. Molecular and Biochemical Parasitology, 1991, 46, 201-208.	1.1	40
101	Plasmodium: The Developmentally Regulated Ribosome. Experimental Parasitology, 1994, 78, 437-441.	1.2	40
102	Flow cytometry-assisted rapid isolation of recombinant Plasmodium berghei parasites exemplified by functional analysis of aquaglyceroporin. International Journal for Parasitology, 2012, 42, 1185-1192.	3.1	40
103	Lossâ€ofâ€function analyses defines vital and redundant functions of the <i><scp>P</scp>lasmodium</i> rhomboid protease family. Molecular Microbiology, 2013, 88, 318-338.	2.5	40
104	Species-specific Regulation and Switching of Transcription between Stage-specific Ribosomal RNA Genes in Plasmodium berghei. Journal of Biological Chemistry, 1997, 272, 3583-3589.	3.4	38
105	Analysis of stage specificity of promoters in Plasmodium berghei using luciferase as a reporter. Molecular and Biochemical Parasitology, 1999, 100, 141-146.	1.1	38
106	Partial sequence of the asexually expressed SU rRNA gene ofPlasmdium vivax. Nucleic Acids Research, 1989, 17, 2135-2135.	14.5	37
107	<i>Plasmodium</i> lipid rafts contain proteins implicated in vesicular trafficking and signalling as well as members of the PIR superfamily, potentially implicated in host immune system interactions. Proteomics, 2008, 8, 2500-2513.	2.2	37
108	Localisation and timing of expression of putative Plasmodium berghei rhoptry proteins in merozoites and sporozoites. Molecular and Biochemical Parasitology, 2009, 166, 22-31.	1.1	37

#	Article	IF	CITATIONS
109	Recent advances in malaria genomics and epigenomics. Genome Medicine, 2016, 8, 92.	8.2	37
110	Mechanisms of pyrimethamine resistance in two different strains of Plasmodium berghei. Molecular and Biochemical Parasitology, 1994, 68, 167-171.	1.1	36
111	Heterogeneous ribosome populations are present in Plasmodium berghei during development in its vector. Molecular Microbiology, 1999, 31, 253-260.	2.5	35
112	Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host. Malaria Journal, 2011, 10, 71.	2.3	35
113	Two types of sequence polymorphism in the circumsporozoite gene of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1992, 50, 37-45.	1.1	33
114	Puromycin-N-acetyltransferase as a selectable marker for use in Plasmodium falciparum. Molecular and Biochemical Parasitology, 2001, 117, 155-160.	1.1	31
115	From cradle to grave: RNA biology in malaria parasites. Wiley Interdisciplinary Reviews RNA, 2010, 1, 287-303.	6.4	31
116	Species-Specific Inhibition of Cerebral Malaria in Mice Coinfected with Plasmodium spp Infection and Immunity, 2005, 73, 4777-4786.	2.2	30
117	The crystal structures of macrophage migration inhibitory factor from <i>Plasmodium falciparum</i> and <i>Plasmodium berghei</i> . Protein Science, 2009, 18, 2578-2591.	7.6	30
118	Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites. BMC Genomics, 2011, 12, 155.	2.8	30
119	Stable expression of green fluorescent protein in blood and mosquito stages of Plasmodium berghei. Molecular and Biochemical Parasitology, 1998, 97, 247-252.	1.1	29
120	The Phylogeny of malaria: A useful study. Parasitology Today, 1993, 9, 246-250.	3.0	27
121	Interspecies conservation of gene order and intron-exon structure in a genomic locus of high gene density and complexity in Plasmodium. Nucleic Acids Research, 2001, 29, 2059-2068.	14.5	26
122	Plasmodium berghei α-tubulin II: A role in both male gamete formation and asexual blood stages. Molecular and Biochemical Parasitology, 2005, 144, 16-26.	1.1	26
123	A Unique Kelch Domain Phosphatase in Plasmodium Regulates Ookinete Morphology, Motility and Invasion. PLoS ONE, 2012, 7, e44617.	2.5	26
124	Sixty-six kilodalton-related antigens of Plasmodium knowlesi are merozoite surface antigens associated with the apical prominence. Parasite Immunology, 1990, 12, 105-113.	1.5	25
125	PARASITOLOGY: Malaria Vaccines: Back to the Future?. Science, 2005, 307, 528-530.	12.6	25
126	Comparison of introns in a cdc2-homologous gene within a number of Plasmodium species. Molecular and Biochemical Parasitology, 1995, 71, 233-241.	1.1	24

#	Article	IF	CITATIONS
127	Intra-generic conservation and limited inter-strain variation in a protective minor surface antigen of Plasmodium knowlesi merozoites. Molecular and Biochemical Parasitology, 1991, 44, 141-144.	1.1	22
128	Genome Wide Analysis of Inbred Mouse Lines Identifies a Locus Containing Ppar-Î ³ as Contributing to Enhanced Malaria Survival. PLoS ONE, 2010, 5, e10903.	2.5	22
129	Characterization of a programmed alteration in an 18S ribosomal gene that accompanies the experimental induction of drug resistance in Schistosoma mansoni Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7754-7758.	7.1	21
130	Transfection Systems for Animal Models of Malaria. Parasitology Today, 1998, 14, 245-249.	3.0	21
131	Genomics and Malaria Control. New England Journal of Medicine, 2004, 351, 1901-1904.	27.0	21
132	Malaria parasite transmission stages: an update. Trends in Parasitology, 2004, 20, 575-580.	3.3	21
133	Characterization of a new phosphatase from Plasmodium. Molecular and Biochemical Parasitology, 2011, 179, 69-79.	1.1	21
134	Copperâ€transporting <scp>ATP</scp> ase is important for malaria parasite fertility. Molecular Microbiology, 2014, 91, 315-325.	2.5	21
135	The structure of the large subunit rRNA expressed in blood stages of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1995, 72, 227-237.	1.1	19
136	Has the time come for us to complement our malaria parasites?. Trends in Parasitology, 2011, 27, 1-2.	3.3	19
137	Epigenetic Roulette in Blood Stream Plasmodium: Gambling on Sex. PLoS Pathogens, 2016, 12, e1005353.	4.7	19
138	Experimentally Engineered Mutations in a Ubiquitin Hydrolase, UBP-1, Modulate <i>In Vivo</i> Susceptibility to Artemisinin and Chloroquine in Plasmodium berghei. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	18
139	Gene expression in Plasmodium berghei ookinetes and early oocysts in a co-culture system with mosquito cells. Molecular and Biochemical Parasitology, 2005, 139, 1-13.	1.1	17
140	Malaria: New Vaccines for Old?. Cell, 2006, 124, 689-693.	28.9	17
141	Transfection of Rodent Malaria Parasites. Methods in Molecular Biology, 2012, 923, 99-125.	0.9	17
142	Mutations with multiple independent origins in surface antigens mark the targets of biological selective pressure. Immunology Letters, 1990, 25, 23-26.	2.5	16
143	Transgenic Expression of a Mosquito-Stage Malarial Protein, Pbs21, in Blood Stages of Transformed <i>Plasmodium berghei</i> and Induction of an Immune Response upon Infection. Infection and Immunity, 1998, 66, 3884-3891.	2.2	16
144	Salivary Gland-Specific P. berghei Reporter Lines Enable Rapid Evaluation of Tissue-Specific Sporozoite Loads in Mosquitoes. PLoS ONE, 2012, 7, e36376.	2.5	15

#	Article	IF	CITATIONS
145	Plasmodium berghei K13 Mutations Mediate <i>In Vivo</i> Artemisinin Resistance That Is Reversed by Proteasome Inhibition. MBio, 2020, 11, .	4.1	15
146	A comparison of the effects of oestrogen and tamoxifen on the synthesis of uterine RNA in immature rats. The Journal of Steroid Biochemistry, 1981, 14, 625-630.	1.1	14
147	The conserved genome organisation of non-falciparum malaria species: the need to know more. International Journal for Parasitology, 2000, 30, 357-370.	3.1	14
148	Topology and replication of a nuclear episomal plasmid in the rodent malaria Plasmodium berghei. Nucleic Acids Research, 2002, 30, 726-731.	14.5	14
149	Immunization with genetically attenuated P52-deficient Plasmodium berghei sporozoites induces a long-lasting effector memory CD8+ T cell response in the liver. Journal of Immune Based Therapies and Vaccines, 2011, 9, 6.	2.4	14
150	Sequence of a small ribosomal RNA gene fromPlasmodium lophurae. Nucleic Acids Research, 1989, 17, 1763-1763.	14.5	13
151	Orthology between the genomes ofPlasmodium falciparumand rodent malaria parasites: possible practical applications. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 55-63.	4.0	13
152	PARASITOLOGY: Guilty Until Proven Otherwise. Science, 2003, 301, 1487-1488.	12.6	13
153	Rapid inducible protein displacement in Plasmodium in vivo and in vitro using knocksideways technology. Wellcome Open Research, 2017, 2, 18.	1.8	13
154	P. berghei Telomerase Subunit TERT is Essential for Parasite Survival. PLoS ONE, 2014, 9, e108930.	2.5	12
155	The rodent malaria parasite Plasmodium berghei does not contain a typical O-type small subunit ribosomal RNA geneâ~†. Molecular and Biochemical Parasitology, 2000, 105, 169-174.	1.1	9
156	Transfection of malaria parasites. Parasitology Today, 1996, 12, 129-132.	3.0	8
157	Mammalian Deubiquitinating Enzyme Inhibitors Display <i>in Vitro</i> and <i>in Vivo</i> Activity against Malaria Parasites and Potentiate Artemisinin Action. ACS Infectious Diseases, 2021, 7, 333-346.	3.8	8
158	Characterisation of the Cdc2-related kinase 2 gene from Plasmodium knowlesi and P. berghei. Molecular and Biochemical Parasitology, 1998, 95, 229-240.	1.1	7
159	Targeted Terminal Deletions as a Tool for Functional Genomics Studies in Plasmodium. Genome Research, 2000, 10, 1414-1420.	5.5	7
160	Why are male malaria parasites in such a rush?. Evolution, Medicine and Public Health, 2013, 2013, 3-13.	2.5	7
161	Current status of experimental models for the study of malaria. Parasitology, 2022, 149, 729-750.	1.5	7
162	Identification of the transcription initiation site of the asexually expressed rRNA genes of the malaria parasite Plasmodium berghei. Molecular and Biochemical Parasitology, 1999, 99, 193-205.	1.1	6

#	Article	IF	CITATIONS
163	Corrigendum to "The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti―[International Journal for Parasitology 33 (2003) 933–943]. International Journal for Parasitology, 2004, 34, 245-247.	3.1	6
164	The Exoneme Helps Malaria Parasites to Break out of Blood Cells. Cell, 2007, 131, 1036-1038.	28.9	6
165	Primary Structure of the Plasmodium vivax crk2 Gene and Interference of the Yeast Cell Cycle upon Its Conditional Expression. Experimental Parasitology, 2001, 97, 119-128.	1.2	5
166	A rationalization of the effects of anti-oestrogens and oestrogens on uterine RNA synthesis in the immature rat. The Journal of Steroid Biochemistry, 1983, 18, 7-11.	1.1	4
167	Molecular approaches to malaria. Molecular Microbiology, 2004, 54, 575-587.	2.5	4
168	Genome-Informed Contributions to Malaria Therapies:ÂFeeding Somewhere Down the (Pipe)Line. Cell Host and Microbe, 2008, 3, 280-283.	11.0	4
169	Home Improvements: How the Malaria Parasite Makes the Red Blood Cell Home Sweet Home. Journal of Molecular Cell Biology, 2010, 2, 11-13.	3.3	4
170	Episomal Transformation of Plasmodium berghei. , 2002, 72, 305-316.		3
171	Zygote morphogenesis but not the establishment of cell polarity in Plasmodium berghei is controlled by the small GTPase, RAB11A. PLoS Pathogens, 2020, 16, e1008091.	4.7	3
172	Tamoxifen-induced changes in the polyribosomes and associated mRNA of rat uterus. Molecular and Cellular Endocrinology, 1983, 32, 233-244.	3.2	2
173	Plasmodium falciparum: Birds to humans. Parasitology Today, 1992, 8, 91-92.	3.0	2
174	Chloroquine resistance—discovering the missing link?. Nature Medicine, 1998, 4, 23-24.	30.7	2
175	Foreword—MBP thematic issue on genomics. Molecular and Biochemical Parasitology, 2001, 118, 127-128.	1.1	2
176	Ectopic Expression of a Neospora caninum Kazal Type Inhibitor Triggers Developmental Defects in Toxoplasma and Plasmodium. PLoS ONE, 2015, 10, e0121379.	2.5	2
177	Diagnostic DNA amplification \hat{a} ∈ " not the complete answer?. Parasitology Today, 1989, 5, 9-10.	3.0	1
178	Gene organization of rab6, a marker for the novel Golgi of Plasmodium. Molecular and Biochemical Parasitology, 1999, 100, 217-222.	1.1	1
179	Gene expression in Plasmodium berghei ookinetes and early oocysts in a co-culture system with mosquito cells. Molecular and Biochemical Parasitology, 2005, 140, 253-267.	1.1	1
180	EVIMalaR — a model for international cooperation in scientific research. Nature Reviews Microbiology, 2013, 11, 505-506.	28.6	1

#	Article	IF	CITATIONS
181	Unveiling the Malaria Parasite's Cloak of Invisibility?. Science, 2013, 340, 936-937.	12.6	1
182	The dog did nothing in the night-time. Nature, 1997, 387, 119-119.	27.8	0
183	Erratum. Parasitology Today, 1998, 14, 336.	3.0	0
184	ARMed and even more dangerous?. Trends in Microbiology, 1999, 7, 135-137.	7.7	0
185	Malaria vaccine research—setting the record straight. Nature Medicine, 2000, 6, 234-234.	30.7	0
186	Corrigendum to "Gene expression in plasmodium berghei ookinetes and early oocysts in a co-culture system with mosquito cells" [Mol Biochem Parasitol 139 (2005) 1-13]. Molecular and Biochemical Parasitology, 2005, 140, 251.	1.1	0
187	Plasmodium's Sticky Fingers. Cell, 2005, 122, 149-151.	28.9	0
188	Coalition Politics: Linking Malaria Transmission to Mosquito Reproduction. Trends in Parasitology, 2019, 35, 486-489.	3.3	0
189	Stable Transfection of Plasmodium Berghei: A Crash Course. , 2000, , 43-72.		0
190	Title is missing!. , 2020, 16, e1008091.		0
191	Title is missing!. , 2020, 16, e1008091.		0
192	Title is missing!. , 2020, 16, e1008091.		0
193	Title is missing!. , 2020, 16, e1008091.		0
194	Title is missing!. , 2020, 16, e1008091.		0
195	Title is missing!. , 2020, 16, e1008091.		ο