Manuel A Coimbra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1868048/publications.pdf Version: 2024-02-01

		19636	38368
315	13,717	61	95
papers	citations	h-index	g-index
321	321	321	14281
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydrate Polymers, 2015, 132, 378-396.	5.1	716
2	Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 2012, 27, 287-292.	5.6	324
3	Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food and Function, 2012, 3, 903.	2.1	229
4	Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydrate Polymers, 2003, 51, 383-389.	5.1	207
5	Structural and thermal characterization of galactomannans from non-conventional sources. Carbohydrate Polymers, 2011, 83, 179-185.	5.1	206
6	Volatile composition of Baga red wine. Analytica Chimica Acta, 2004, 513, 257-262.	2.6	180
7	Multivariate analysis of uronic acid and neutral sugars in whole pectic samples by FT-IR spectroscopy. Carbohydrate Polymers, 1998, 37, 241-248.	5.1	179
8	Influence of grape pomace extract incorporation on chitosan films properties. Carbohydrate Polymers, 2014, 113, 490-499.	5.1	162
9	Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 2015, 115, 1-9.	5.1	159
10	Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohydrate Polymers, 2009, 75, 408-414.	5.1	153
11	FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydrate Research, 1999, 317, 145-154.	1.1	141
12	Headspace Solid Phase Microextraction (SPME) Analysis of Flavor Compounds in Wines. Effect of the Matrix Volatile Composition in the Relative Response Factors in a Wine Model. Journal of Agricultural and Food Chemistry, 2001, 49, 5142-5151.	2.4	137
13	Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. European Food Research and Technology, 2012, 234, 1-12.	1.6	137
14	Supercritical fluid extraction of grape seed (Vitis vinifera L.) oil. Effect of the operating conditions upon oil composition and antioxidant capacity. Chemical Engineering Journal, 2010, 160, 634-640.	6.6	135
15	Characterisation of phenolic extracts from olive pulp and olive pomace by electrospray mass spectrometry. Journal of the Science of Food and Agriculture, 2005, 85, 21-32.	1.7	134
16	InÂvitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers – Effect of interfacial composition. Food Hydrocolloids, 2016, 52, 460-467.	5.6	134
17	Composition of Phenolic Compounds in a Portuguese Pear (Pyrus communisL. Var. S. Bartolomeu) and Changes after Sun-Drying. Journal of Agricultural and Food Chemistry, 2002, 50, 4537-4544.	2.4	131
18	Headspace-SPME applied to varietal volatile components evolution during Vitis vinifera L. cv. â€~Baga' ripening. Analytica Chimica Acta, 2006, 563, 204-214.	2.6	130

#	Article	IF	CITATIONS
19	Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chemistry, 2009, 115, 48-53.	4.2	129
20	Chemical Characterization of the High Molecular Weight Material Extracted with Hot Water from Green and Roasted Arabica Coffee. Journal of Agricultural and Food Chemistry, 2001, 49, 1773-1782.	2.4	125
21	Melanoidins from Coffee Infusions. Fractionation, Chemical Characterization, and Effect of the Degree of Roast. Journal of Agricultural and Food Chemistry, 2007, 55, 3967-3977.	2.4	123
22	Fourier Transform Infrared Spectroscopy and Chemometric Analysis of White Wine Polysaccharide Extracts. Journal of Agricultural and Food Chemistry, 2002, 50, 3405-3411.	2.4	115
23	Morphogenesis Control in <i>Candida albicans</i> and <i>Candida dubliniensis</i> through Signaling Molecules Produced by Planktonic and Biofilm Cells. Eukaryotic Cell, 2007, 6, 2429-2436.	3.4	114
24	Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. Journal of Chromatography A, 2007, 1161, 292-299.	1.8	111
25	Chitosan–caffeic acid–genipin films presenting enhanced antioxidant activity and stability in acidic media. Carbohydrate Polymers, 2013, 91, 236-243.	5.1	103
26	Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydrate Polymers, 2013, 94, 626-633.	5.1	102
27	Temperature dependence of the formation and melting of pectin–Ca2+ networks: a rheological study. Food Hydrocolloids, 2003, 17, 801-807.	5.6	101
28	Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Analytica Chimica Acta, 2009, 635, 214-221.	2.6	98
29	Optimization of the supercritical fluid coextraction of oil and diterpenes from spent coffee grounds using experimental design and response surface methodology. Journal of Supercritical Fluids, 2014, 85, 165-172.	1.6	98
30	Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains. Carbohydrate Research, 2002, 337, 917-924.	1.1	96
31	Valuation of brewer's spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products, 2014, 52, 136-143.	2.5	95
32	Applications of chitosan and their derivatives in beverages: a critical review. Current Opinion in Food Science, 2017, 15, 61-69.	4.1	94
33	Microwave superheated water and dilute alkali extraction of brewers' spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydrate Polymers, 2014, 99, 415-422.	5.1	91
34	Foamability, Foam Stability, and Chemical Composition of Espresso Coffee As Affected by the Degree of Roast. Journal of Agricultural and Food Chemistry, 1997, 45, 3238-3243.	2.4	89
35	Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chemistry, 2017, 225, 146-153.	4.2	89
36	Infrared spectroscopy and outer product analysis for quantification of fat, nitrogen, and moisture of cocoa powder. Analytica Chimica Acta, 2007, 601, 77-86.	2.6	86

#	Article	IF	CITATIONS
37	Isolation and characterisation of cell wall polymers from olive pulp (Olea europaea L.). Carbohydrate Research, 1994, 252, 245-262.	1.1	84
38	Enhancement of the supercritical fluid extraction of grape seed oil by using enzymatically pre-treated seed. Journal of Supercritical Fluids, 2009, 48, 225-229.	1.6	83
39	Unravelling the behaviour of curcumin nanoemulsions during in vitro digestion: effect of the surface charge. Soft Matter, 2013, 9, 3147.	1.2	81
40	Determination of the degree of methylesterification of pectic polysaccharides by FT-IR using an outer product PLS1 regression. Carbohydrate Polymers, 2002, 50, 85-94.	5.1	79
41	Calcium-mediated gelation of an olive pomace pectic extract. Carbohydrate Polymers, 2003, 52, 125-133.	5.1	77
42	NMR structural elucidation of the arabinan from Prunus dulcis immunobiological active pectic polysaccharides. Carbohydrate Polymers, 2006, 66, 27-33.	5.1	77
43	Elemental analysis for categorization of wines and authentication of their certified brand of origin. Journal of Food Composition and Analysis, 2011, 24, 548-562.	1.9	77
44	Effect of ripening on texture, microstructure and cell wall polysaccharide composition of olive fruit (Olea europaea). Physiologia Plantarum, 2001, 111, 439-447.	2.6	76
45	The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromolecular Bioscience, 2017, 17, 1600340.	2.1	76
46	Rhamnoarabinosyl and rhamnoarabinoarabinosyl side chains as structural features of coffee arabinogalactans. Phytochemistry, 2008, 69, 1573-1585.	1.4	75
47	Microwave assisted dehydration of broccoli by-products and simultaneous extraction of bioactive compounds. Food Chemistry, 2018, 246, 386-393.	4.2	74
48	In vitro and in vivo studies of natural products: A challenge for their valuation. The case study of chamomile (Matricaria recutita L.). Industrial Crops and Products, 2012, 40, 1-12.	2.5	73
49	Xylo-oligosaccharides display a prebiotic activity when used to supplement wheat or corn-based diets for broilers. Poultry Science, 2018, 97, 4330-4341.	1.5	73
50	Characterization of Galactomannan Derivatives in Roasted Coffee Beverages. Journal of Agricultural and Food Chemistry, 2006, 54, 3428-3439.	2.4	71
51	Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innovative Food Science and Emerging Technologies, 2012, 16, 227-232.	2.7	70
52	Interactions between κ-carrageenan and chitosan in nanolayered coatings—Structural and transport properties. Carbohydrate Polymers, 2012, 87, 1081-1090.	5.1	70
53	Nature of Phenolic Compounds in Coffee Melanoidins. Journal of Agricultural and Food Chemistry, 2014, 62, 7843-7853.	2.4	69
54	Isolation and Analysis of Cell Wall Polymers from Olive Pulp. Modern Methods of Plant Analysis, 1996, , 19-44.	0.1	68

#	Article	IF	CITATIONS
55	Screening of variety- and pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile. Analytica Chimica Acta, 2007, 597, 257-264.	2.6	68
56	Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocolloids, 2020, 108, 105836.	5.6	68
57	Immunostimulatory properties of coffee mannans. Molecular Nutrition and Food Research, 2009, 53, 1036-1043.	1.5	67
58	Isolation and characterisation of cell wall polymers from olive pulp (Olea europaea L.). Carbohydrate Research, 1994, 252, 245-262.	1.1	66
59	Synergy of polysaccharide mixtures in gelcasting of alumina. Journal of the European Ceramic Society, 2000, 20, 423-429.	2.8	66
60	Arabinosyl and glucosyl residues as structural features of acetylated galactomannans from green and roasted coffee infusions. Carbohydrate Research, 2005, 340, 1689-1698.	1.1	64
61	Enhancement of Escherichia coli and Staphylococcus aureus Antibiotic Susceptibility Using Sesquiterpenoids. Medicinal Chemistry, 2008, 4, 616-623.	0.7	64
62	Chemical composition and structural features of the macromolecular components of Hibiscus cannabinus grown in Portugal. Industrial Crops and Products, 1996, 5, 189-196.	2.5	61
63	Variations in chemical composition and structure of macromolecular components in different morphological regions and maturity stages of Arundo donax. Industrial Crops and Products, 1997, 6, 51-58.	2.5	61
64	Structural Ripening-Related Changes of the Arabinan-Rich Pectic Polysaccharides from Olive Pulp Cell Walls. Journal of Agricultural and Food Chemistry, 2007, 55, 7124-7130.	2.4	61
65	Simple and effective chitosan based films for the removal of Hg from waters: Equilibrium, kinetic and ionic competition. Chemical Engineering Journal, 2016, 300, 217-229.	6.6	61
66	Apple Pomace Extract as a Sustainable Food Ingredient. Antioxidants, 2019, 8, 189.	2.2	61
67	Role of hydroxycinnamates in coffee melanoidin formation. Phytochemistry Reviews, 2010, 9, 171-185.	3.1	60
68	Screening and distinction of coffee brews based on headspace solid phase microextraction/gas chromatography/principal component analysis. Journal of the Science of Food and Agriculture, 2004, 84, 43-51.	1.7	59
69	Effect of high pressure treatments on the physicochemical properties of a sulphur dioxide-free red wine. Food Chemistry, 2013, 141, 2558-2566.	4.2	59
70	Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: Inhibition by Maillard reaction. Food Chemistry, 2017, 227, 422-431.	4.2	59
71	Chemical Characterization of Galactomannans and Arabinogalactans from Two Arabica Coffee Infusions As Affected by the Degree of Roast. Journal of Agricultural and Food Chemistry, 2002, 50, 1429-1434.	2.4	58
72	Purification, structure and immunobiological activity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds. Carbohydrate Research, 2004, 339, 2555-2566.	1.1	58

#	Article	IF	CITATIONS
73	Revisiting the structural features of arabinoxylans from brewers' spent grain. Carbohydrate Polymers, 2016, 139, 167-176.	5.1	58
74	Optimisation of stir bar sorptive extraction and liquid desorption combined with large volume injection-gas chromatography–quadrupole mass spectrometry for the determination of volatile compounds in wines. Analytica Chimica Acta, 2008, 624, 79-89.	2.6	57
75	Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomaterialia, 2013, 9, 9086-9097.	4.1	57
76	Valuation of brewers spent yeast polysaccharides: A structural characterization approach. Carbohydrate Polymers, 2015, 116, 215-222.	5.1	57
77	Nutritional Potential and Toxicological Evaluation of Tetraselmis sp. CTP4 Microalgal Biomass Produced in Industrial Photobioreactors. Molecules, 2019, 24, 3192.	1.7	57
78	Influence of polysaccharide composition in foam stability of espresso coffee. Carbohydrate Polymers, 1998, 37, 283-285.	5.1	56
79	Improved efficiency of brewer's spent grain arabinoxylans by ultrasound-assisted extraction. Ultrasonics Sonochemistry, 2015, 24, 155-164.	3.8	56
80	Chitosan–genipin film, a sustainable methodology for wine preservation. Green Chemistry, 2016, 18, 5331-5341.	4.6	56
81	Compositional Features and Bioactive Properties of Aloe vera Leaf (Fillet, Mucilage, and Rind) and Flower. Antioxidants, 2019, 8, 444.	2.2	56
82	Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydrate Polymers, 2020, 230, 115644.	5.1	56
83	Use of FT-IR spectroscopy to follow the effect of processing in cell wall polysaccharide extracts of a sun-dried pear. Carbohydrate Polymers, 2001, 45, 175-182.	5.1	55
84	Chemical Characterization of the High-Molecular-Weight Material Extracted with Hot Water from Green and Roasted Robusta Coffees As Affected by the Degree of Roast. Journal of Agricultural and Food Chemistry, 2002, 50, 7046-7052.	2.4	53
85	Mass spectrometry characterization of an Aloe vera mannan presenting immunostimulatory activity. Carbohydrate Polymers, 2012, 90, 229-236.	5.1	53
86	Hepatoprotection of sesquiterpenoids: A quantitative structure–activity relationship (QSAR) approach. Food Chemistry, 2014, 146, 78-84.	4.2	53
87	Study of the volatile components of a candied plum and estimation of their contribution to the aroma. Food Chemistry, 2008, 111, 897-905.	4.2	52
88	Extractability and structure of spent coffee ground polysaccharides by roasting pre-treatments. Carbohydrate Polymers, 2013, 97, 81-89.	5.1	52
89	Revisiting the chemistry of apple pomace polyphenols. Food Chemistry, 2019, 294, 9-18.	4.2	52
90	Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains. PLoS ONE, 2015, 10, e0143641.	1.1	51

#	Article	IF	CITATIONS
91	Interaction of wine mannoproteins and arabinogalactans with anthocyanins. Food Chemistry, 2018, 243, 1-10.	4.2	51
92	Structural analysis and potential immunostimulatory activity of Nannochloropsis oculata polysaccharides. Carbohydrate Polymers, 2019, 222, 114962.	5.1	51
93	Occurrence of cellobiose residues directly linked to galacturonic acid in pectic polysaccharides. Carbohydrate Polymers, 2012, 87, 620-626.	5.1	50
94	Sequential microwave superheated water extraction of mannans from spent coffee grounds. Carbohydrate Polymers, 2014, 103, 333-338.	5.1	49
95	Evidence for galloylated type-A procyanidins in grape seeds. Food Chemistry, 2007, 105, 1457-1467.	4.2	48
96	High pressure treatments accelerate changes in volatile composition of sulphur dioxide-free wine during bottle storage. Food Chemistry, 2015, 188, 406-414.	4.2	48
97	Purification and characterization of olive (Olea europaea L.) peroxidase – Evidence for the occurrence of a pectin binding peroxidase. Food Chemistry, 2007, 101, 1571-1579.	4.2	47
98	Anatomy and Cell Wall Polysaccharides of Almond (Prunus dulcisD. A. Webb) Seeds. Journal of Agricultural and Food Chemistry, 2004, 52, 1364-1370.	2.4	46
99	Headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry for the determination of volatile compounds from marine salt. Journal of Chromatography A, 2010, 1217, 5511-5521.	1.8	46
100	Aroma Potential of Two Bairrada White Grape Varieties:Â Maria Gomes and Bical. Journal of Agricultural and Food Chemistry, 2000, 48, 4802-4807.	2.4	45
101	Structural characterisation of underivatised olive pulp xylo-oligosaccharides by mass spectrometry using matrix-assisted laser desorption/ionisation and electrospray ionisation. Rapid Communications in Mass Spectrometry, 2002, 16, 2124-2132.	0.7	45
102	Structural characterisation by MALDI-MS of olive xylo-oligosaccharides obtained by partial acid hydrolysis. Carbohydrate Polymers, 2003, 53, 101-107.	5.1	45
103	Impact of grape pectic polysaccharides on anthocyanins thermostability. Carbohydrate Polymers, 2020, 239, 116240.	5.1	45
104	Positive and negative electrospray ionisation tandem mass spectrometry as a tool for structural characterisation of acid released oligosaccharides from olive pulp glucuronoxylans. Carbohydrate Research, 2003, 338, 1497-1505.	1.1	44
105	Identification of Anomeric Configuration of Underivatized Reducing Glucopyranosyl-glucose Disaccharides by Tandem Mass Spectrometry and Multivariate Analysis. Analytical Chemistry, 2007, 79, 5896-5905.	3.2	43
106	Evaluation of the Effect of Roasting on the Structure of Coffee Galactomannans Using Model Oligosaccharides. Journal of Agricultural and Food Chemistry, 2011, 59, 10078-10087.	2.4	43
107	Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site. Scientific Reports, 2015, 5, 11125.	1.6	43
108	Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process. Carbohydrate Polymers, 2015, 124, 322-330.	5.1	43

#	Article	IF	CITATIONS
109	Isolation and characterisation of cell wall polymers from the heavily lignified tissues of olive (Olea) Tj ETQq1 1 0.	784314 rg 5.1	BT/Overlock
110	Influence of hydration of food additive polysaccharides on FT-IR spectra distinction. Carbohydrate Polymers, 2006, 63, 355-359.	5.1	42
111	Rapid tool for distinction of wines based on the global volatile signature. Journal of Chromatography A, 2006, 1114, 188-197.	1.8	41
112	Synergistic Effect of High and Low Molecular Weight Molecules in the Foamability and Foam Stability of Sparkling Wines. Journal of Agricultural and Food Chemistry, 2011, 59, 3168-3179.	2.4	41
113	Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro Caco-2 cell models. Food Chemistry, 2014, 156, 204-211.	4.2	41
114	Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydrate Polymers, 2019, 213, 217-227.	5.1	41
115	Metabolic distinction of Ulmus minor xylem tissues after inoculation with Ophiostoma novo-ulmi. Phytochemistry, 2005, 66, 2458-2467.	1.4	40
116	Structural features of partially acetylated coffee galactomannans presenting immunostimulatory activity. Carbohydrate Polymers, 2010, 79, 397-402.	5.1	40
117	By-products of Scyliorhinus canicula, Prionace glauca and Raja clavata: A valuable source of predominantly 6S sulfated chondroitin sulfate. Carbohydrate Polymers, 2017, 157, 31-37.	5.1	40
118	Process development for the production of prebiotic fructo-oligosaccharides by penicillium citreonigrum. Bioresource Technology, 2019, 282, 464-474.	4.8	40
119	THERMAL AND HIGH-PRESSURE STABILITY OF PURIFIED PECTIN METHYLESTERASE FROM PLUMS (PRUNUS) TJ ET	-Qq1 1 0.7	′84314 rgBT
120	Effect of candying on cell wall polysaccharides of plums (Prunus domestica L.) and influence of cell wall enzymes. Food Chemistry, 2008, 111, 538-548.	4.2	39
121	Quantification of polymeric mannose in wine extracts by FT-IR spectroscopy and OSC-PLS1 regression. Carbohydrate Polymers, 2005, 61, 434-440.	5.1	38
122	Establishment of the volatile profile of â€~Bravo de Esmolfe' apple variety and identification of varietal markers. Food Chemistry, 2009, 113, 513-521.	4.2	38
123	In vitro digestibility and fermentability of fructo-oligosaccharides produced by Aspergillus ibericus. Journal of Functional Foods, 2018, 46, 278-287.	1.6	38
124	Impact of high pressure treatments on the physicochemical properties of a sulphur dioxide-free white wine during bottle storage: Evidence for Maillard reaction acceleration. Innovative Food Science and Emerging Technologies, 2013, 20, 51-58.	2.7	37
125	Carbohydrate content, dietary fibre and melanoidins: Composition of espresso from single-dose coffee capsules. Food Research International, 2016, 89, 989-996.	2.9	37

#	Article	IF	CITATIONS
127	Effect of Processing on Cell Wall Polysaccharides of Green Table Olives. Journal of Agricultural and Food Chemistry, 1996, 44, 2394-2401.	2.4	36
128	Exogenous phenol increase resistance of Ulmus minor to Dutch elm disease through formation of suberin-like compounds on xylem tissues. Environmental and Experimental Botany, 2008, 64, 97-104.	2.0	36
129	Evaluation of the mutagenicity of sesquiterpenic compounds and their influence on the susceptibility towards antibiotics of two clinically relevant bacterial strains. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 723, 18-25.	0.9	36
130	The hydrophobic polysaccharides of apple pomace. Carbohydrate Polymers, 2019, 223, 115132.	5.1	36
131	Cyanoflan: A cyanobacterial sulfated carbohydrate polymer with emulsifying properties. Carbohydrate Polymers, 2020, 229, 115525.	5.1	36
132	Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packaging and Shelf Life, 2021, 28, 100644.	3.3	36
133	Metabolic fingerprinting allows discrimination between <i>Ulmus pumila</i> and <i>U. minor</i> , and between <i>U. minor</i> clones of different susceptibility to Dutch elm disease. Forest Pathology, 2008, 38, 244-256.	0.5	35
134	Nerolidol effects on mitochondrial and cellular energetics. Toxicology in Vitro, 2012, 26, 189-196.	1.1	35
135	Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods, 2021, 10, 683.	1.9	35
136	Study of the retention capacity of anthocyanins by wine polymeric material. Food Chemistry, 2012, 134, 957-963.	4.2	34
137	Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. Journal of Cleaner Production, 2018, 193, 652-660.	4.6	34
138	Fragmentation pattern of underivatised xylo-oligosaccharides and their alditol derivatives by electrospray tandem mass spectrometry. Carbohydrate Polymers, 2004, 55, 401-409.	5.1	33
139	Effect of enzymatic aroma release on the volatile compounds of white wines presenting different aroma potentials. Journal of the Science of Food and Agriculture, 2005, 85, 199-205.	1.7	33
140	Insight into the Mechanism of Coffee Melanoidin Formation Using Modified "in Bean―Models. Journal of Agricultural and Food Chemistry, 2012, 60, 8710-8719.	2.4	33
141	Origin of the Pinking Phenomenon of White Wines. Journal of Agricultural and Food Chemistry, 2014, 62, 5651-5659.	2.4	33
142	Structural analysis of dextrins and characterization of dextrin-based biomedical hydrogels. Carbohydrate Polymers, 2014, 114, 458-466.	5.1	33
143	A critical review on extraction techniques and gas chromatography based determination of grapevine derived sesquiterpenes. Analytica Chimica Acta, 2014, 846, 8-35.	2.6	33
144	Structural elucidation and interfacial properties of a levan isolated from Bacillus mojavensis. Food Chemistry, 2021, 343, 128456.	4.2	33

#	Article	IF	CITATIONS
145	Characterization of Plum Procyanidins by Thiolytic Depolymerization. Journal of Agricultural and Food Chemistry, 2008, 56, 5188-5196.	2.4	32
146	Effects of fungus inoculation and salt stress on physiology and biochemistry of in vitro grapevines: Emphasis on sugar composition changes by FT-IR analyses. Environmental and Experimental Botany, 2009, 65, 1-10.	2.0	32
147	Foamability and Foam Stability of Molecular Reconstituted Model Sparkling Wines. Journal of Agricultural and Food Chemistry, 2011, 59, 8770-8778.	2.4	32
148	Blanching impact on pigments, glucosinolates, and phenolics of dehydrated broccoli by-products. Food Research International, 2020, 132, 109055.	2.9	32
149	Polysaccharide Structures and Their Hypocholesterolemic Potential. Molecules, 2021, 26, 4559.	1.7	32
150	Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Molecules, 2020, 25, 272.	1.7	32
151	Deeper insight into the monoterpenic composition of Ferula gummosa oleo-gum-resin from Iran. Industrial Crops and Products, 2012, 36, 500-507.	2.5	31
152	Thermal stability of spent coffee ground polysaccharides: Galactomannans and arabinogalactans. Carbohydrate Polymers, 2014, 101, 256-264.	5.1	31
153	In vitro macrophage nitric oxide production by Pterospartum tridentatum (L.) Willk. inflorescence polysaccharides. Carbohydrate Polymers, 2017, 157, 176-184.	5.1	31
154	Single-step production of arabino-xylooligosaccharides by recombinant Bacillus subtilis 3610 cultivated in brewers' spent grain. Carbohydrate Polymers, 2018, 199, 546-554.	5.1	31
155	Occurrence of furfuraldehydes during the processing of Quercus suber L. cork. Simultaneous determination of furfural, 5-hydroxymethylfurfural and 5-methylfurfural and their relation with cork polysaccharides. Carbohydrate Polymers, 2004, 56, 287-293.	5.1	30
156	Structural analysis of gellans produced by Sphingomonas elodea strains by electrospray tandem mass spectrometry. Carbohydrate Polymers, 2009, 77, 10-19.	5.1	30
157	Evaluation of the potential of high pressure technology as an enological practice for red wines. Innovative Food Science and Emerging Technologies, 2016, 33, 76-83.	2.7	30
158	Pectic polysaccharides as an acrylamide mitigation strategy –ÂCompetition between reducing sugars and sugar acids. Food Hydrocolloids, 2018, 81, 113-119.	5.6	30
159	Reserve, structural and extracellular polysaccharides of Chlorella vulgaris: A holistic approach. Algal Research, 2020, 45, 101757.	2.4	30
160	Adding value to ragworms (Hediste diversicolor) through the bioremediation of a super-intensive marine fish farm. Aquaculture Environment Interactions, 2018, 10, 79-88.	0.7	30
161	Simple and solvent-free methodology for simultaneous quantification of methanol and acetic acid content of plant polysaccharides based on headspace solid phase microextraction-gas chromatography (HS-SPME-GC-FID). Carbohydrate Polymers, 2006, 64, 306-311.	5.1	29
162	Amino acid profile and Maillard compounds of sun-dried pears. Relation with the reddish brown colour of the dried fruits. European Food Research and Technology, 2011, 233, 637-646.	1.6	29

#	Article	IF	CITATIONS
163	Structural features of spent coffee grounds water-soluble polysaccharides: Towards tailor-made microwave assisted extractions. Carbohydrate Polymers, 2019, 214, 53-61.	5.1	29
164	Sesquiterpenic composition of the inflorescences of Brazilian chamomile (Matricaria recutita L.): Impact of the agricultural practices. Industrial Crops and Products, 2011, 34, 1482-1490.	2.5	28
165	Dimeric calcium complexes of arabinan-rich pectic polysaccharides from Olea europaea L. cell walls. Carbohydrate Polymers, 2006, 65, 535-543.	5.1	27
166	Modelling the supercritical fluid extraction of edible oils and analysis of the effect of enzymatic pre-treatments of seed upon model parameters. Chemical Engineering Research and Design, 2011, 89, 1118-1125.	2.7	27
167	Tailoring Functional Chitosanâ€Based Composites for Food Applications. Chemical Record, 2018, 18, 1138-1149.	2.9	27
168	Effect of sun-drying on microstructure and texture of S. Bartolomeu pears (Pyrus communis L.). European Food Research and Technology, 2008, 226, 1545-1552.	1.6	26
169	Palmitoylation of xanthan polysaccharide for self-assembly microcapsule formation and encapsulation of cells in physiological conditions. Soft Matter, 2011, 7, 9647.	1.2	26
170	Oxidation of mannosyl oligosaccharides by hydroxyl radicals as assessed by electrospray mass spectrometry. Carbohydrate Research, 2011, 346, 2603-2611.	1.1	26
171	Assessment of the sesquiterpenic profile of Ferula gummosa oleo-gum-resin (galbanum) from Iran. Contributes to its valuation as a potential source of sesquiterpenic compounds. Industrial Crops and Products, 2013, 44, 185-191.	2.5	26
172	Fractionation of <i>Isochrysis galbana</i> Proteins, Arabinans, and Glucans Using Ionic-Liquid-Based Aqueous Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 14042-14053.	3.2	26
173	Tailoring the surface properties and flexibility of starch-based films using oil and waxes recovered from potato chips byproducts. International Journal of Biological Macromolecules, 2020, 163, 251-259.	3.6	26
174	Differentiation of isomeric pentose disaccharides by electrospray ionization tandem mass spectrometry and discriminant analysis. Rapid Communications in Mass Spectrometry, 2012, 26, 2897-2904.	0.7	25
175	Chlorogenic acid–arabinose hybrid domains in coffee melanoidins: Evidences from a model system. Food Chemistry, 2015, 185, 135-144.	4.2	25
176	Thymus algeriensis Bioss & Reut: Relationship of phenolic compounds composition with in vitro/in vivo antioxidant and antibacterial activity. Food Research International, 2020, 136, 109500.	2.9	25
177	The effect of pectic polysaccharides from grape skins on salivary protein – procyanidin interactions. Carbohydrate Polymers, 2020, 236, 116044.	5.1	25
178	Identification of oleuropein oligomers in olive pulp and pomace. Journal of the Science of Food and Agriculture, 2006, 86, 1495-1502.	1.7	24
179	Headspace solid phase microextraction and gas chromatography–quadrupole mass spectrometry methodology for analysis of volatile compounds of marine salt as potential origin biomarkers. Analytica Chimica Acta, 2009, 635, 167-174.	2.6	24
180	Maternal effects and carbohydrate changes of Pinus pinaster after inoculation with FusariumÂcircinatum. Trees - Structure and Function, 2014, 28, 373-379.	0.9	24

#	Article	IF	CITATIONS
181	Influence of molecular weight on in vitro immunostimulatory properties of instant coffee. Food Chemistry, 2014, 161, 60-66.	4.2	24
182	Search for suitable maturation parameters to define the harvest maturity of plums (Prunus domestica) Tj ETQqO (0	Overlock 101
183	Relationships between the varietal volatile composition of the musts and white wine aroma quality. A four year feasibility study. LWT - Food Science and Technology, 2010, 43, 1508-1516.	2.5	23
184	Demonstration of the presence of acetylation and arabinose branching as structural features of locust bean gum galactomannans. Carbohydrate Polymers, 2011, 86, 1476-1483.	5.1	23
185	Application of Hydroxytyrosol in the Functional Foods Field: From Ingredient to Dietary Supplements. Antioxidants, 2020, 9, 1246.	2.2	23
186	Brewer's yeast polysaccharides $\hat{a} \in$ " A review of their exquisite structural features and biomedical applications. Carbohydrate Polymers, 2022, 277, 118826.	5.1	23
187	Effect of black oxidising table olive process on the cell wall polysaccharides of olive pulp (Olea) Tj ETQq1 1 0.784	314 rgBT /	Oyerlock 10
188	Ripening-related changes in the cell walls of olive (Olea europaea L.) pulp of two consecutive harvests. Journal of the Science of Food and Agriculture, 2006, 86, 988-998.	1.7	22
189	<i>Candida</i> species extracellular alcohols: production and effect in sessile cells. Journal of Basic Microbiology, 2010, 50, S89-97.	1.8	22
190	Application of Fourier transform infrared spectroscopy and orthogonal projections to latent structures/partial least squares regression for estimation of procyanidins average degree of polymerisation. Analytica Chimica Acta, 2010, 661, 143-149.	2.6	22
191	Formation of type 4 resistant starch and maltodextrins from amylose and amylopectin upon dry heating: A model study. Carbohydrate Polymers, 2016, 141, 253-262.	5.1	22
192	Data on coffee composition and mass spectrometry analysis of mixtures of coffee related carbohydrates, phenolic compounds and peptides. Data in Brief, 2017, 13, 145-161.	0.5	22
193	Instant coffee as a source of antioxidant-rich and sugar-free coloured compounds for use in bakery: Application in biscuits. Food Chemistry, 2017, 231, 114-121.	4.2	22
194	Downscale fermentation for xylooligosaccharides production by recombinant Bacillus subtilis 3610. Carbohydrate Polymers, 2019, 205, 176-183.	5.1	22
195	Food-grade hydroxypropyl methylcellulose-based formulations for electrohydrodynamic processing: Part I – Role of solution parameters on fibre and particle production. Food Hydrocolloids, 2021, 118, 106761.	5.6	22
196	Inclusion Complex of Resveratrol with γ-Cyclodextrin as a Functional Ingredient for Lemon Juices. Foods, 2021, 10, 16.	1.9	22
197	Polysaccharide-based formulations as potential carriers for pulmonary delivery – A review of their properties and fates. Carbohydrate Polymers, 2022, 277, 118784.	5.1	22
198	Demonstration of Pectic Polysaccharides in Cork Cell Wall fromQuercus suberL Journal of Agricultural and Food Chemistry, 2000, 48, 2003-2007.	2.4	21

#	Article	IF	CITATIONS
199	Structural differentiation of uronosyl substitution patterns in acidic heteroxylans by electrospray tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 2004, 15, 43-47.	1.2	21
200	New properties of chia seed mucilage (Salvia hispanica L.) and potential application in cosmetic and pharmaceutical products. Industrial Crops and Products, 2021, 171, 113981.	2.5	21
201	Effects of ripening on microstructure and texture of "Ameixa d'Elvas―candied plums. Food Chemistry, 2009, 115, 1094-1101.	4.2	20
202	Structure, rheology, and copper-complexation of a hyaluronan-like exopolysaccharide from Vibrio. Carbohydrate Polymers, 2019, 222, 114999.	5.1	20
203	Chemical composition and antimicrobial activity of Satureja montana byproducts essential oils. Industrial Crops and Products, 2019, 137, 541-548.	2.5	20
204	Phenolic profile, safety assessment, and anti-inflammatory activity of Salvia verbenaca L Journal of Ethnopharmacology, 2021, 272, 113940.	2.0	20
205	Establishment of the varietal volatile profile of musts from whiteVitis vinifera L. varieties. Journal of the Science of Food and Agriculture, 2007, 87, 1667-1676.	1.7	19
206	Roasting-induced changes in arabinotriose, a model of coffee arabinogalactan side chains. Food Chemistry, 2013, 138, 2291-2299.	4.2	19
207	Influence of ohmic heating in the composition of extracts from Gracilaria vermiculophylla. Algal Research, 2021, 58, 102360.	2.4	19
208	The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients, 2021, 13, 4495.	1.7	19
209	Naturally fermented black olives: Effect on cell wall polysaccharides and on enzyme activities of Taggiasca and Conservolea varieties. LWT - Food Science and Technology, 2010, 43, 153-160.	2.5	18
210	Oxidation of amylose and amylopectin by hydroxyl radicals assessed by electrospray ionisation mass spectrometry. Carbohydrate Polymers, 2016, 148, 290-299.	5.1	18
211	Coffee silverskin and starch-rich potato washing slurries as raw materials for elastic, antioxidant, and UV-protective biobased films. Food Research International, 2020, 138, 109733.	2.9	18
212	Grape pectic polysaccharides stabilization of anthocyanins red colour: Mechanistic insights. Carbohydrate Polymers, 2021, 255, 117432.	5.1	18
213	Feasibility of chitosan crosslinked with genipin as biocoating for cellulose-based materials. Carbohydrate Polymers, 2020, 242, 116429.	5.1	18
214	The combined effects of black oxidising table olive process and ripening on the cell wall polysaccharides of olive pulp. Carbohydrate Polymers, 2007, 68, 647-657.	5.1	17
215	Effect of candying on microstructure and texture of plums (Prunus domestica L.). LWT - Food Science and Technology, 2008, 41, 1776-1783.	2.5	17
216	Influence of grain particle sizes on the structure of arabinoxylans from brewer's spent grain. Carbohydrate Polymers, 2015, 130, 222-226.	5.1	17

#	Article	IF	CITATIONS
217	Impact of microwave-assisted extraction on roasted coffee carbohydrates, caffeine, chlorogenic acids and coloured compounds. Food Research International, 2020, 129, 108864.	2.9	17
218	Strategies to Broaden the Applications of Olive Biophenols Oleuropein and Hydroxytyrosol in Food Products. Antioxidants, 2021, 10, 444.	2.2	17
219	New dextrin-vinylacrylate hydrogel: Studies on protein diffusion and release. Carbohydrate Polymers, 2009, 75, 322-327.	5.1	16
220	Effects of gamma irradiation and periodate oxidation on the structure of dextrin assessed by mass spectrometry. European Polymer Journal, 2018, 103, 158-169.	2.6	16
221	Comparison of high pressure treatment with conventional red wine aging processes: impact on phenolic composition. Food Research International, 2019, 116, 223-231.	2.9	16
222	Coffee Melanoidinâ€Based Multipurpose Film Formation: Application to Single ell Nanoencapsulation. ChemNanoMat, 2020, 6, 379-385.	1.5	16
223	Food supplement vitamins, minerals, amino-acids, fatty acids, phenolic and alkaloid-based substances: An overview of their interaction with drugs. Critical Reviews in Food Science and Nutrition, 2023, 63, 4106-4140.	5.4	16
224	Inhibitory effect of phenolic compounds from grape seeds (Vitis vinifera L.) on the activity of angiotensin I converting enzyme. LWT - Food Science and Technology, 2013, 54, 265-270.	2.5	15
225	Differentiation of isomeric βâ€(1–4) hexose disaccharides by positive electrospray tandem mass spectrometry. Journal of Mass Spectrometry, 2013, 48, 548-552.	0.7	15
226	Safety of chitosan processed wine in shrimp allergic patients. Annals of Allergy, Asthma and Immunology, 2016, 116, 462-463.	0.5	15
227	Effect of spatio-temporal shifts in salinity combined with other environmental variables on the ecological processes provided by Zostera noltei meadows. Scientific Reports, 2017, 7, 1336.	1.6	15
228	Carbohydrates as targeting compounds to produce infusions resembling espresso coffee brews using quality by design approach. Food Chemistry, 2021, 344, 128613.	4.2	15
229	The Potential of Fucose-Containing Sulfated Polysaccharides As Scaffolds for Biomedical Applications. Current Medicinal Chemistry, 2019, 26, 6399-6411.	1.2	15
230	Olive Pomace, a Source for Valuable Arabinan-Rich Pectic Polysaccharides. Topics in Current Chemistry, 2010, 294, 129-141.	4.0	14
231	Distinction of fungal polysaccharides by N/C ratio and mid infrared spectroscopy. International Journal of Biological Macromolecules, 2015, 80, 271-281.	3.6	14
232	Structural polymeric features that contribute to in vitro immunostimulatory activity of instant coffee. Food Chemistry, 2018, 242, 548-554.	4.2	14
233	Helicobacter pylori lipopolysaccharide structural domains and their recognition by immune proteins revealed with carbohydrate microarrays. Carbohydrate Polymers, 2021, 253, 117350.	5.1	14
234	Role of Coffee Caffeine and Chlorogenic Acids Adsorption to Polysaccharides with Impact on Brew Immunomodulation Effects. Foods, 2021, 10, 378.	1.9	14

#	Article	IF	CITATIONS
235	In vitro immunomodulatory activity of water-soluble glucans from fresh and dried Longan (Dimocarpus longan Lour.). Carbohydrate Polymers, 2021, 266, 118106.	5.1	14
236	CotA laccase-ABTS/hydrogen peroxide system: An efficient approach to produce active and decolorized chitosan-genipin films. Carbohydrate Polymers, 2017, 175, 628-635.	5.1	13
237	Influence of High Hydrostatic Pressure Technology on Wine Chemical and Sensorial Characteristics. Advances in Food and Nutrition Research, 2017, 82, 205-235.	1.5	13
238	Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission. Plant and Cell Physiology, 2020, 61, 814-825.	1.5	13
239	Insights on Single-Dose Espresso Coffee Capsules' Volatile Profile: From Ground Powder Volatiles to Prediction of Espresso Brew Aroma Properties. Foods, 2021, 10, 2508.	1.9	13
240	Evaluation of Microbial-Fructo-Oligosaccharides Metabolism by Human Gut Microbiota Fermentation as Compared to Commercial Inulin-Derived Oligosaccharides. Foods, 2022, 11, 954.	1.9	13
241	Characterisation of Rosa Mosqueta seeds: cell wall polysaccharide composition and light microscopy observations. Journal of the Science of Food and Agriculture, 2000, 80, 1859-1865.	1.7	12
242	Effect of dryâ€salt processing on the textural properties and cell wall polysaccharides of cv. Thasos black olives. Journal of the Science of Food and Agriculture, 2008, 88, 2079-2086.	1.7	12
243	Traditional and industrial oven-dry processing of olive fruits: influence on textural properties, cell wall polysaccharide composition, and enzymatic activity. European Food Research and Technology, 2009, 229, 415-425.	1.6	12
244	Bioaccumulation of Amylose‣ike Glycans by <i>Helicobacter pylori</i> . Helicobacter, 2009, 14, 559-570.	1.6	12
245	Differentiation of isomeric Lewis blood groups by positive ion electrospray tandem mass spectrometry. Analytical Biochemistry, 2010, 397, 186-196.	1.1	12
246	Arabinoxylans from cereal by-products. , 2018, , 227-251.		12
247	Impacts of S-metolachlor and terbuthylazine in fatty acid and carbohydrate composition of the benthic clam Scrobicularia plana. Ecotoxicology and Environmental Safety, 2019, 173, 293-304.	2.9	12
248	Mechanism of iron ions sorption by chitosan-genipin films in acidic media. Carbohydrate Polymers, 2020, 236, 116026.	5.1	12
249	Relevance of genipin networking on rheological, physical, and mechanical properties of starch-based formulations. Carbohydrate Polymers, 2021, 254, 117236.	5.1	12
250	Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. Algal Research, 2021, 59, 102439.	2.4	12
251	Headspace-solid phase microextraction–gas chromatography as a tool to define an index that establishes the retention capacity of the wine polymeric fraction towards ethyl esters. Journal of Chromatography A, 2007, 1150, 155-161.	1.8	11
252	Rapid tool for assessment of C13 norisoprenoids in wines. Journal of Chromatography A, 2009, 1216, 8398-8403.	1.8	11

9

#	Article	IF	CITATIONS
253	Identification of cell-surface mannans in a virulent Helicobacter pylori strain. Carbohydrate Research, 2010, 345, 830-838.	1.1	11
254	Neutral and acidic products derived from hydroxyl radical-induced oxidation of arabinotriose assessed by electrospray ionisation mass spectrometry. Journal of Mass Spectrometry, 2014, 49, 280-290.	0.7	11
255	Antioxidant activity of <i><scp>P</scp>inus pinaster</i> infected with <i><scp>F</scp>usarium circinatum</i> is influenced by maternal effects. Forest Pathology, 2014, 44, 337-340.	0.5	11
256	Transglycosylation reactions between galactomannans and arabinogalactans during dry thermal treatment. Carbohydrate Polymers, 2014, 112, 48-55.	5.1	11
257	Composition of pectic polysaccharides in a Portuguese apple (Malus domestica Borkh. cv Bravo de) Tj ETQq1 1 C	.784314 r 0.6	gBT /Overloc
258	Can volatile organic compounds be markers of sea salt?. Food Chemistry, 2015, 169, 102-113.	4.2	11
259	Conditions for producing long shelf life fruit salads processed using mild pasteurization. LWT - Food Science and Technology, 2017, 85, 316-323.	2.5	11
260	Modulation of infusion processes to obtain coffee-derived food ingredients with distinct composition. European Food Research and Technology, 2019, 245, 2133-2146.	1.6	11
261	Physicochemical Fingerprint of "Pera Rocha do Oeste― A PDO Pear Native from Portugal. Foods, 2020, 9, 1209.	1.9	11
262	In Vitro Hypocholesterolemic Effect of Coffee Compounds. Nutrients, 2020, 12, 437.	1.7	11
263	Microwave hydrodiffusion and gravity as a sustainable alternative approach for an efficient apple pomace drying. Bioresource Technology, 2021, 333, 125207.	4.8	11
264	Isolation and identification of an arabinogalactan extracted from pistachio external hull: Assessment of immunostimulatory activity. Food Chemistry, 2022, 373, 131416.	4.2	11
265	Efficiency of purification methods on the recovery of exopolysaccharides from fermentation media. Carbohydrate Polymers, 2020, 231, 115703.	5.1	10
266	Comprehensive Study of Variety Oenological Potential Using Statistic Tools for the Efficient Use of Non-Renewable Resources. Applied Sciences (Switzerland), 2021, 11, 4003.	1.3	10
267	Self-glucose feeding hydrogels by enzyme empowered degradation for 3D cell culture. Materials Horizons, 2022, 9, 694-707.	6.4	10
268	Hydrophobic Starch-Based Films Using Potato Washing Slurries and Spent Frying Oil. Foods, 2021, 10, 2897.	1.9	10
269	Characterisation of Chilean hazelnut (Gevuina avellana) tissues: light microscopy and cell wall polysaccharides. Journal of the Science of Food and Agriculture, 2003, 83, 158-165.	1.7	9

270 Galactomannans in Coffee. , 2015, , 173-182.

#	Article	IF	CITATIONS
271	Nonenzymatic Transglycosylation Reactions Induced by Roasting: New Insights from Models Mimicking Coffee Bean Regions with Distinct Polysaccharide Composition. Journal of Agricultural and Food Chemistry, 2016, 64, 1831-1840.	2.4	9
272	Contribution of non-enzymatic transglycosylation reactions to the honey oligosaccharides origin and diversity. Pure and Applied Chemistry, 2019, 91, 1231-1242.	0.9	9
273	Food Ingredients Derived from Lemongrass Byproduct Hydrodistillation: Essential Oil, Hydrolate, and Decoction. Molecules, 2022, 27, 2493.	1.7	9
274	Aldobiouronic acid domains in Helicobacter pylori. Carbohydrate Research, 2011, 346, 638-643.	1.1	8
275	Quantification and potential aroma contribution of <i>β</i> â€ionone in marine salt. Flavour and Fragrance Journal, 2010, 25, 93-97.	1.2	7
276	Process for detecting Helicobacter pylori using aliphatic amides. Analytical and Bioanalytical Chemistry, 2011, 401, 1889-1898.	1.9	7
277	Migration of Tannins and Pectic Polysaccharides from Natural Cork Stoppers to the Hydroalcoholic Solution. Journal of Agricultural and Food Chemistry, 2020, 68, 14230-14242.	2.4	7
278	HS-SPME Gas Chromatography Approach for Underivatized Acrylamide Determination in Biscuits. Foods, 2021, 10, 2183.	1.9	7
279	Effect of Continuous and Discontinuous Microwave-Assisted Heating on Starch-Derived Dietary Fiber Production. Molecules, 2021, 26, 5619.	1.7	7
280	Hydrolysates containing xylooligosaccharides produced by different strategies: Structural characterization, antioxidant and prebiotic activities. Food Chemistry, 2022, 391, 133231.	4.2	7
281	Characterization of Non-volatile Oxidation Products Formed from Triolein in a Model Study at Frying Temperature. Journal of Agricultural and Food Chemistry, 2021, 69, 3466-3478.	2.4	6
282	Impact of Chitosan-Genipin Films on Volatile Profile of Wine along Storage. Applied Sciences (Switzerland), 2021, 11, 6294.	1.3	6
283	<i>Helicobacter pylori</i> cell-surface glycans structural features: role in gastric colonization, pathogenesis, and carbohydrate-based vaccines. Carbohydrate Chemistry, 2011, , 160-193.	0.3	6
284	Bread enriched with resveratrol: Influence of the delivery vehicles on its bioactivity. Food Bioscience, 2022, 49, 101887.	2.0	6
285	Numerical Simulation of Supercritical Extraction Processes. Chemical Product and Process Modeling, 2009, 4, .	0.5	5
286	Determination of Aldoses, Deoxy-aldoses and Uronic Acids Content in a Pectin-Rich Extract by RP-HPLC-FLD after p-AMBA Derivatization. Chromatographia, 2013, 76, 1117-1124.	0.7	5
287	Salt pan brine water as a sustainable source of sulphated polysaccharides with immunostimulatory activity. International Journal of Biological Macromolecules, 2019, 133, 235-242.	3.6	5
288	Sarcocornia perennis pectic polysaccharides orally administered to mice: Holistic histological evaluation of xenobiotic protection. International Journal of Biological Macromolecules, 2020, 154, 150-158.	3.6	5

#	Article	IF	CITATIONS
289	Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients. Applied Sciences (Switzerland), 2021, 11, 2443.	1.3	5
290	Cinnamomum burmannii decoction: A thickening and flavouring ingredient. LWT - Food Science and Technology, 2022, 153, 112428.	2.5	5
291	Composition of food grade Atlantic salts regarding triacylglycerides, polysaccharides and protein. Journal of Food Composition and Analysis, 2015, 41, 21-29.	1.9	4
292	Data on yields, sugars and glycosidic-linkage analyses of coffee arabinogalactan and galactomannan mixtures and optimization of their microwave assisted extraction from spent coffee grounds. Data in Brief, 2019, 24, 103931.	0.5	4
293	Variability in the organic ligands released by Emiliania huxleyi under simulated ocean acidification conditions. AIMS Environmental Science, 2017, 4, 788-808.	0.7	4
294	Apple (Malus domestica) By-products: Chemistry, Functionality and Industrial Applications. , 2022, , 349-373.		4
295	Fatty Acids of Densely Packed Embryos of Carcinus maenas Reveal Homogeneous Maternal Provisioning and No Within-Brood Variation at Hatching. Biological Bulletin, 2016, 230, 120-129.	0.7	3
296	Sources of carbohydrates on bulk deposition in South-Western of Europe. Chemosphere, 2021, 263, 127982.	4.2	3
297	Mapping Molecular Recognition of β1,3-1,4-Clucans by a Surface Clycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus. Microbiology Spectrum, 2021, 9, e0182621.	1.2	3
298	Surface Morphology of Chitosan Films with Incorporation of Grape Pomace. Microscopy and Microanalysis, 2015, 21, 35-36.	0.2	2
299	Biochemical impacts in adult and juvenile farmed European seabass and gilthead seabream from semi-intensive aquaculture of southern European estuarine systems. Environmental Science and Pollution Research, 2019, 26, 13422-13440.	2.7	2
300	Gentianose: Purification and structural determination of an unknown oligosaccharide in grape seeds. Food Chemistry, 2021, 344, 128588.	4.2	2
301	Assessment of seasonal and spatial variations in the nutritional content of six edible marine bivalve species by the response of a set of integrated biomarkers. Ecological Indicators, 2021, 124, 107378.	2.6	2
302	Locust bean millingâ€derived dust as a raw material for the development of biodegradable bioplastics with antioxidant activity. Journal of the Science of Food and Agriculture, 2023, 103, 1088-1096.	1.7	2
303	Influence of UV degradation of bioplastics on the amplification of mercury bioavailability in aquatic environments. Marine Pollution Bulletin, 2022, 180, 113806.	2.3	2
304	Effect of High Pressure Treatments on protease and β-Galactosidase Activities of Table Olives. High Pressure Research, 2002, 22, 669-672.	0.4	1
305	Comparison of Two Processes for Isolation of Exopolysaccharide Produced byLactobacillus acidophilus. , 0, , 280-285.		1
306	Methodologies for Improved Quality Control Assessment of Food Products. , 0, , 11-47.		1

306 Methodologies for Improved Quality Control Assessment of Food Products. , 0, , 11-47.

#	Article	IF	CITATIONS
307	Purification and Characterization of Olive (Olea europaea L.) Peroxidases. , 2010, , 325-332.		1
308	CHAPTER 29. Melanoidins. , 2019, , 662-678.		1
309	In vino veritas. TrAC - Trends in Analytical Chemistry, 2004, 23, xi-xv.	5.8	0
310	S10.26 Nerolidol disturbe mitochondrial bioenergetic but delay the permeability transition pore due a membrane antioxidant protective effect. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S64.	0.5	0
311	17. Microwave extraction of bioactive compounds from industrial by-products. , 2017, , 302-333.		0
312	XX EuroFoodChem conference. Food Research International, 2021, 143, 110276.	2.9	0
313	Editorial: 6th EPNOE International Polysaccharide Conference. Carbohydrate Polymers, 2021, 266, 118147.	5.1	0
314	Effect of perforated disc height and filter basket on espresso coffee carbohydrates content and composition. European Food Research and Technology, 2022, 248, 1217.	1.6	0
315	Editorial: Action and Mechanism of Herbal Glycans. Frontiers in Pharmacology, 2022, 13, 883055.	1.6	0