
Federico Paoletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1867844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	4.0	2,530
2	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
4	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257
5	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
6	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
7	Measurement of the VIRGO superattenuator performance for seismic noise suppression. Review of Scientific Instruments, 2001, 72, 3643-3652.	1.3	89
8	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	4.0	85
9	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	4.3	79
10	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	4.3	62
11	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	4.0	59
12	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	4.0	56
13	Measurement and subtraction of Schumann resonances at gravitational-wave interferometers. Physical Review D, 2018, 97, .	4.7	50
14	Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications. Physical Review D, 2018, 97, .	4.7	41
15	Subtraction of correlated noise in global networks of gravitational-wave interferometers. Classical and Quantum Gravity, 2016, 33, 224003.	4.0	36
16	Site-selection criteria for the Einstein Telescope. Review of Scientific Instruments, 2020, 91, 094504.	1.3	32
17	The Hunt for Environmental Noise in Virgo during the Third Observing Run. Galaxies, 2020, 8, 82.	3.0	29
18	Machine learning for gravitational-wave detection: surrogate Wiener filtering for the prediction and optimized cancellation of Newtonian noise at Virgo. Classical and Quantum Gravity, 2020, 37, 195016.	4.0	23

Federico Paoletti

#	Article	IF	CITATIONS
19	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
20	Seismic array measurements at Virgo's west end building for the configuration of a Newtonian-noise cancellation system. Classical and Quantum Gravity, 2020, 37, 025005.	4.0	18
21	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	4.3	16
22	Investigation of magnetic noise in advanced Virgo. Classical and Quantum Gravity, 2019, 36, 225004.	4.0	14
23	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	4.3	13
24	Magnetic coupling to the advanced Virgo payloads and its impact on the low frequency sensitivity. Review of Scientific Instruments, 2018, 89, 114501.	1.3	13
25	KAGRA underground environment and lessons for the Einstein Telescope. Physical Review D, 2021, 104, .	4.7	10
26	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	4.0	9
27	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	4.0	8
28	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	2.0	7
29	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	4.3	6
30	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
31	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	2.0	5
32	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	4.0	5
33	Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency. European Physical Journal Plus, 2021, 136, 1.	2.6	5
34	Characterization of the seismic field at Virgo and improved estimates of Newtonian-noise suppression by recesses. Classical and Quantum Gravity, 2021, 38, 245007.	4.0	5
35	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	4.0	4
36	Adaptive Denoising of Acoustic Noise Injections Performed at the Virgo Interferometer. Pure and Applied Geophysics, 2020, 177, 3395-3406.	1.9	4

0

#	Article	IF	CITATIONS
37	Automated source of squeezed vacuum states driven by finite state machine based software. Review of Scientific Instruments, 2021, 92, 054504.	1.3	3

Environmental Noise in Gravitational-Wave Interferometers. , 2022, , 407-478.