
Timothy Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/18667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Historical Contingency Causes Divergence in Adaptive Expression of the <i>lac</i> Operon. Molecular Biology and Evolution, 2021, 38, 2869-2879.	8.9	6
2	Dynamics of bacterial adaptation. Biochemical Society Transactions, 2021, 49, 945-951.	3.4	0
3	The cost of evolved constitutive <i>lac</i> gene expression is usually, but not always, maintained during evolution of generalist populations. Ecology and Evolution, 2021, 11, 12497-12507.	1.9	4
4	Bacterial Evolution in High-Osmolarity Environments. MBio, 2020, 11, .	4.1	12
5	Environmentâ€dependent costs and benefits of recombination in independently evolved populations of Escherichia coli *. Evolution; International Journal of Organic Evolution, 2020, 74, 1865-1873.	2.3	1
6	Environment changes epistasis to alter tradeâ€offs along alternative evolutionary paths. Evolution; International Journal of Organic Evolution, 2019, 73, 2094-2105.	2.3	28
7	Predicting microbial growth in a mixed culture from growth curve data. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14698-14707.	7.1	102
8	Diversity in <i>lac</i> Operon Regulation among Diverse Escherichia coli Isolates Depends on the Broader Genetic Background but Is Not Explained by Genetic Relatedness. MBio, 2019, 10, .	4.1	10
9	The fitness challenge of studying molecular adaptation. Biochemical Society Transactions, 2019, 47, 1533-1542.	3.4	5
10	Effects of Beneficial Mutations in pykF Gene Vary over Time and across Replicate Populations in a Long-Term Experiment with Bacteria. Molecular Biology and Evolution, 2018, 35, 202-210.	8.9	28
11	Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory. Nature Ecology and Evolution, 2017, 1, 61.	7.8	79
12	Adaptation of <i>Escherichia coli</i> to glucose promotes evolvability in lactose. Evolution; International Journal of Organic Evolution, 2016, 70, 465-470.	2.3	13
13	Benefit of transferred mutations is better predicted by the fitness of recipients than by their ecological or genetic relatedness. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5047-5052.	7.1	41
14	Grappling with anisotropic data, pseudo-merohedral twinning and pseudo-translational noncrystallographic symmetry: a case study involving pyruvate kinase. Acta Crystallographica Section D: Structural Biology, 2016, 72, 512-519.	2.3	10
15	Cellular Growth Arrest and Persistence from Enzyme Saturation. PLoS Computational Biology, 2016, 12, e1004825.	3.2	30
16	Constraints on adaptation of <i>Escherichia coli</i> to mixed-resource environments increase over time. Evolution; International Journal of Organic Evolution, 2015, 69, 2067-2078.	2.3	44
17	Systematic Perturbation of Cytoskeletal Function Reveals a Linear Scaling Relationship between Cell Geometry and Fitness. Cell Reports, 2014, 9, 1528-1537.	6.4	61
18	Mechanisms and selection of evolvability: experimental evidence. FEMS Microbiology Reviews, 2013, 37, 572-582.	8.6	19

TIMOTHY COOPER

#	Article	IF	CITATIONS
19	Effects of Fe nanoparticles on bacterial growth and biosurfactant production. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	21
20	Evolutionary history and genetic parallelism affect correlated responses to evolution. Molecular Ecology, 2013, 22, 3292-3303.	3.9	23
21	The Environment Affects Epistatic Interactions to Alter the Topology of an Empirical Fitness Landscape. PLoS Genetics, 2013, 9, e1003426.	3.5	94
22	Genetic background affects epistatic interactions between two beneficial mutations. Biology Letters, 2013, 9, 20120328.	2.3	47
23	Measuring Selection Coefficients Below 10â^'3: Method, Questions, and Prospects. Genetics, 2012, 190, 175-186.	2.9	75
24	Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data. PLoS Computational Biology, 2012, 8, e1002391.	3.2	35
25	Adaptive Evolution of the Lactose Utilization Network in Experimentally Evolved Populations of Escherichia coli. PLoS Genetics, 2012, 8, e1002444.	3.5	56
26	Estimation of the rate and effect of new beneficial mutations in asexual populations. Theoretical Population Biology, 2012, 81, 168-178.	1.1	16
27	Second-Order Selection for Evolvability in a Large <i>Escherichia coli</i> Population. Science, 2011, 331, 1433-1436.	12.6	300
28	Negative Epistasis Between Beneficial Mutations in an Evolving Bacterial Population. Science, 2011, 332, 1193-1196.	12.6	497
29	The causes of epistasis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3617-3624.	2.6	175
30	The distribution of fitness effects of new beneficial mutations in <i>Pseudomonas fluorescens</i> . Biology Letters, 2011, 7, 98-100.	2.3	48
31	Experimental evolution with E. coli in diverse resource environments. I. Fluctuating environments promote divergence of replicate populations. BMC Evolutionary Biology, 2010, 10, 11.	3.2	102
32	Within-host competition selects for plasmid-encoded toxin–antitoxin systems. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3149-3155.	2.6	29
33	Metabolism gets lucky. Molecular Systems Biology, 2010, 6, 439.	7.2	3
34	Identification and dynamics of a beneficial mutation in a long-term evolution experiment with Escherichia coli. BMC Evolutionary Biology, 2009, 9, 302.	3.2	35
35	Microbes exploit groundhog day. Nature, 2009, 460, 181-181.	27.8	2
36	Expression Profiles Reveal Parallel Evolution of Epistatic Interactions Involving the CRP Regulon in Escherichia coli. PLoS Genetics, 2008, 4, e35.	3.5	59

TIMOTHY COOPER

#	Article	IF	CITATIONS
37	Recombination Speeds Adaptation by Reducing Competition between Beneficial Mutations in Populations of Escherichia coli. PLoS Biology, 2007, 5, e225.	5.6	182
38	A NEGATIVE RELATIONSHIP BETWEEN MUTATION PLEIOTROPY AND FITNESS EFFECT IN YEAST. Evolution; International Journal of Organic Evolution, 2007, 61, 1495-1499.	2.3	52
39	Effect of random and hub gene disruptions on environmental and mutational robustness in Escherichia coli. BMC Genomics, 2006, 7, 237.	2.8	32
40	Parasites and mutational load: an experimental test of a pluralistic theory for the evolution of sex. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 311-317.	2.6	43
41	Evolution of bacterial diversity and the origins of modularity. Research in Microbiology, 2004, 155, 370-375.	2.1	27
42	Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1072-1077.	7.1	409
43	Transfer of Conjugative Plasmids and Bacteriophage λ Occurs in the Presence of Antibiotics That Prevent de Novo Gene Expression. Plasmid, 2000, 43, 171-175.	1.4	13
44	Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12643-12648.	7.1	122