
## Kimmo Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1866603/publications.pdf Version: 2024-02-01



KIMMO JENSEN

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | GABA Transporter-1 (GAT1)-Deficient Mice: Differential Tonic Activation of GABAA Versus GABAB<br>Receptors in the Hippocampus. Journal of Neurophysiology, 2003, 90, 2690-2701.                                                                    | 1.8  | 218       |
| 2  | GABA Transporter Deficiency Causes Tremor, Ataxia, Nervousness, and Increased GABA-Induced Tonic<br>Conductance in Cerebellum. Journal of Neuroscience, 2005, 25, 3234-3245.                                                                       | 3.6  | 212       |
| 3  | THIP, a Hypnotic and Antinociceptive Drug, Enhances an Extrasynaptic GABAA Receptor-mediated Conductance in Mouse Neocortex. Cerebral Cortex, 2006, 16, 1134-1141.                                                                                 | 2.9  | 159       |
| 4  | Number, Density, and Surface/Cytoplasmic Distribution of GABA Transporters at Presynaptic<br>Structures of Knock-In Mice Carrying GABA Transporter Subtype 1–Green Fluorescent Protein Fusions.<br>Journal of Neuroscience, 2002, 22, 10251-10266. | 3.6  | 133       |
| 5  | Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus, 2011, 21, 422-433.                                                                                                                                | 1.9  | 98        |
| 6  | Long-Term Stress Disrupts the Structural and Functional Integrity of GABAergic Neuronal Networks in the Medial Prefrontal Cortex of Rats. Frontiers in Cellular Neuroscience, 2018, 12, 148.                                                       | 3.7  | 87        |
| 7  | SorCS2 is required for BDNF-dependent plasticity in the hippocampus. Molecular Psychiatry, 2016, 21, 1740-1751.                                                                                                                                    | 7.9  | 73        |
| 8  | Succinic Semialdehyde Dehydrogenase: Biochemical–Molecular–Clinical Disease Mechanisms, Redox<br>Regulation, and Functional Significance. Antioxidants and Redox Signaling, 2011, 15, 691-718.                                                     | 5.4  | 68        |
| 9  | Reduced GABAergic Inhibition Explains Cortical Hyperexcitability in the Wobbler Mouse Model of ALS.<br>Cerebral Cortex, 2011, 21, 625-635.                                                                                                         | 2.9  | 67        |
| 10 | Mature BDNF, But Not proBDNF, Reduces Excitability of Fast-Spiking Interneurons in Mouse Dentate<br>Gyrus. Journal of Neuroscience, 2009, 29, 12412-12418.                                                                                         | 3.6  | 61        |
| 11 | Activity-Dependent Depression of GABAergic IPSCs in Cultured Hippocampal Neurons. Journal of Neurophysiology, 1999, 82, 42-49.                                                                                                                     | 1.8  | 58        |
| 12 | L-type Ca2+ channel-mediated short-term plasticity of GABAergic synapses. Nature Neuroscience, 2001,<br>4, 975-976.                                                                                                                                | 14.8 | 52        |
| 13 | Role of Presynaptic L-Type Ca2+ Channels in GABAergic Synaptic Transmission in Cultured Hippocampal<br>Neurons. Journal of Neurophysiology, 1999, 81, 1225-1230.                                                                                   | 1.8  | 48        |
| 14 | Modulation of Extrasynaptic THIP Conductances by GABAA-Receptor Modulators in Mouse Neocortex.<br>Journal of Neurophysiology, 2007, 97, 2293-2300.                                                                                                 | 1.8  | 36        |
| 15 | Cell Type–Specific GABA <sub>A</sub> Receptor–Mediated Tonic Inhibition in Mouse Neocortex.<br>Journal of Neurophysiology, 2008, 100, 526-532.                                                                                                     | 1.8  | 34        |
| 16 | Post-tetanic potentiation of GABAergic IPSCs in cultured rat hippocampal neurones. Journal of Physiology, 1999, 519, 71-84.                                                                                                                        | 2.9  | 33        |
| 17 | BDNF Depresses Excitability of Parvalbumin-Positive Interneurons through an M-Like Current in Rat<br>Dentate Gyrus. PLoS ONE, 2013, 8, e67318.                                                                                                     | 2.5  | 32        |
| 18 | Pharmacological characterization of a novel positive modulator at α4β3δ-containing extrasynaptic<br>GABAA receptors. Neuropharmacology, 2010, 58, 702-711.                                                                                         | 4.1  | 29        |

Kimmo Jensen

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Presynaptic Plasticity as a Hallmark of Rat Stress Susceptibility and Antidepressant Response. PLoS ONE, 2015, 10, e0119993.                                                                                                | 2.5 | 26        |
| 20 | The Wobbler Mouse Model of Amyotrophic Lateral Sclerosis (ALS) Displays Hippocampal<br>Hyperexcitability, and Reduced Number of Interneurons, but No Presynaptic Vesicle Release<br>Impairments. PLoS ONE, 2013, 8, e82767. | 2.5 | 21        |
| 21 | Selective sparing of hippocampal CA3 cells following in vitro ischemia is due to selective inhibition by acidosis. European Journal of Neuroscience, 2005, 22, 310-316.                                                     | 2.6 | 20        |
| 22 | GABAAReceptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral<br>Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo. Cerebral Cortex, 2015,<br>25, 2594-2609.       | 2.9 | 20        |
| 23 | The Schizophrenia-Associated BRD1 Gene Regulates Behavior, Neurotransmission, and Expression of Schizophrenia Risk Enriched Gene Sets in Mice. Biological Psychiatry, 2017, 82, 62-76.                                      | 1.3 | 19        |
| 24 | SSADH deficiency leads to elevated extracellular GABA levels and increased GABAergic<br>neurotransmission in the mouse cerebral cortex. Journal of Inherited Metabolic Disease, 2008, 31,<br>662-668.                       | 3.6 | 18        |
| 25 | Kinetic analysis of evoked IPSCs discloses mechanism of antagonism of synaptic GABA <sub>A</sub><br>receptors by picrotoxin. British Journal of Pharmacology, 2010, 159, 636-649.                                           | 5.4 | 18        |
| 26 | Positive modulation of δ-subunit containing GABAA receptors in mouse neurons. Neuropharmacology,<br>2012, 63, 469-479.                                                                                                      | 4.1 | 18        |
| 27 | The flavonoid, 2′-methoxy-6-methylflavone, affords neuroprotection following focal cerebral ischaemia. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1266-1282.                                                  | 4.3 | 18        |
| 28 | Plasticity of postsynaptic, but not presynaptic, GABAB receptors inSSADH deficient mice. Experimental Neurology, 2010, 225, 114-122.                                                                                        | 4.1 | 16        |
| 29 | Tetanus-induced asynchronous GABA release in cultured hippocampal neurons. Brain Research, 2000,<br>880, 198-201.                                                                                                           | 2.2 | 13        |
| 30 | Imaging of Ca2+ responses mediated by presynaptic L-type channels on GABAergic boutons of cultured hippocampal neurons. Brain Research, 2009, 1249, 79-90.                                                                  | 2.2 | 13        |
| 31 | Immunolocalization of human alpha-synuclein in the Thy1-aSyn ("Line 61â€ <del>)</del> transgenic mouse line.<br>Neuroscience, 2014, 277, 647-664.                                                                           | 2.3 | 12        |
| 32 | Effect of gene dosage on single-cell hippocampal electrophysiology in a murine model of SSADH deficiency (γ-hydroxybutyric aciduria). Epilepsy Research, 2010, 90, 39-46.                                                   | 1.6 | 9         |
| 33 | Repetitive activation of postsynaptic GABAA receptors by rapid, focal agonist application onto intact rat striatal neurones in vitro. Pflugers Archiv European Journal of Physiology, 2002, 443, 707-712.                   | 2.8 | 8         |
| 34 | The effect of internal GTPγS on GABA-release in cultured hippocampal neurons. Experimental Brain<br>Research, 2000, 134, 204-211.                                                                                           | 1.5 | 4         |
| 35 | Mapping of the spontaneous deletion in the Ap3d1 gene of mocha mice: fast and reliable genotyping.<br>BMC Research Notes, 2008, 1, 119.                                                                                     | 1.4 | 1         |